INITIAL-BOUNDARY VALUE PROBLEM FOR A DEGENERATE QUASILINEAR PARABOLIC EQUATION OF ORDER 2m[®]

Cao Zhenchao Gu Liankun

(Xiamen University)

(Received July 27, 1987; revised June 20, 1989)

Abstract In this paper we consider the initial-boundary value problem for the higher-order degenerate quasilinear parabolic equation

$$\frac{\partial u(x,t)}{\partial t} + \sum_{|a| \leqslant M} (-1)^{|a|} D^a A_a(x,t,\delta u,D^a u) = 0$$

Under some structural conditions for $A_a(x,t,\delta u,D^au)$, existence and uniqueness theorem are proved by applying variational operator theory and Galërkin method.

Key Words Higher-order degenerate equation; semibounded-variational operator; Galerkin method.

Classifications 35K35;35K65.

1. Introduction

Let Ω be a bounded domain in \mathbb{R}^* , $Q = \Omega \times (0,T]$. Consider the following initial boundary value problem for the parabolic equation of order 2m:

$$\begin{cases} \frac{\partial u(x,t)}{\partial t} + \sum_{|a| \leqslant m} (-1)^{|a|} D^a A_a(x,t,\delta u,D^m u) = 0, & (x,t) \in \mathbb{Q} \\ \delta u = (u,Du,\cdots,D^{m-1}u) & (1) \\ \delta u = 0, & (x,t) \in \partial \mathcal{Q} \times (0,T], \\ u(x,0) = u_0(x), & x \in \mathcal{Q}, u_0(x) \in L^2(\mathcal{Q}) \end{cases}$$
When $A_t(u) = \sum_{|a| \leqslant m} (-1)^{|a|} D^a A_a(x,t,\delta u,D^m u)$ for each t in $[0,T]$ is a regular elliptic

operator in the Sobolev space $W^{m,r}(\Omega)$, the problem (1) had been considered by [1]— [3]. In this paper we discuss initial-boundary value problem (1) for a weak degenerate equation. This is the generalization of a result obtained by the writers for the equation of second order (see [4]).

First we introduce the fundamental space V which denotes the completion of $\dot{C}^m(\Omega) = \{ \varphi(x, \cdot) \in C^m(\overline{\Omega}) : \text{ which vanish on a neighborhood of } \partial\Omega \}$ with respect to norm

$$\| \varphi(x, \cdot) \|_{V} = \left\{ \sum_{|\alpha|=m} \| \lambda(x) D^{\alpha} \varphi(x, \cdot) \|_{L^{r}(\Omega)}^{p} \right\}^{1/p}$$

where
$$\lambda(x) \in L^{s}(\Omega)$$
, $\lambda^{-1}(x) \in L^{s}(\Omega)$, $s > n > 1$, $\frac{1}{s} + \frac{1}{p} = \frac{1}{q} < 1$, $2 \le p \le \frac{ns}{s-n}$.

① This work is supported by the National Natural Science Fund of China.

Now we introduce $L^p(0,T;V)$ which is a space of functions defined on [0,T] with values in V such that $\left\{\int_0^T \|u(x,t)\|_{\nu}^p dt\right\}^{1/p} < +\infty$.

Lemma 1.1 V is a separable and reflexive Banach space (cf. [5]).

Lemma 1. 2 V is continuously embedded in $\mathring{W}^{m,q}$, and $\mathring{W}^{m,q}$ is compactly embedded in $\mathring{W}^{m-1,\sigma}$, where σ satisfies $p < \sigma < \frac{nq}{n-q}$, and $q = \frac{ps}{p+s}$.

Proof It is sufficient to point out that the following inequality can be established for function $u(x, \cdot) \in \mathring{\mathcal{C}}^m(\Omega)$

$$\| D^{m}u \|_{L^{q}} = \left\{ \int_{\Omega} |\lambda^{-1}(x)\lambda(x)D^{m}u|^{q}dx \right\}^{1/q} \leqslant \| \lambda^{-1}(x) \|_{L^{q}} \| \lambda(x)D^{m}u \|_{L^{r}}$$

By the interpolation inequality, $\left\{\sum_{|a|=m}\|D^au\|_{L^q}^q\right\}^{1/q}$ would be an equivalent norm on

 $\dot{W}^{m,q}$, then the first conclusion of the lemma is obtained. By the compact imbedding theorem it is easy to show that $\dot{W}^{m,q}$ is compactly embedded in $\dot{W}^{m-1,\sigma}$ if σ satisfied $p < \sigma < nq$

$$\frac{nq}{n-q}$$
.

Lemma 1. 3 If $u(x,t) \in L^p(0,T;V)$ and $u'(x,t) = \frac{\partial u(x,t)}{\partial t} \in L^{p'}(0,T;V^*)$, then $u(x,t) \in C^0(0,T;L^2(\Omega))$ (cf. $\lceil 3 \rceil$).

Definition A function $u(x,t) \in L^p(0,T;V) \cap C^0(0,T;L^2(\Omega))$ is called a generalized solution of problem (1) if $u'(x,t) \in L^p(0,T;V^*)$, $u(x,0) = u_0(x)$, and u(x,t) satisfies

$$\int_0^T \langle u',v\rangle dt + \int_0^T A_t(u,v)dt = 0, \quad \forall \ v(x,t) \in L^p(0,T;V)$$

where

$$\langle u', v \rangle = \int_{\Omega} u'(x, \cdot) v(x, \cdot) dx$$

$$A_t(u, v) = \sum_{|a| \leq m} \int_{\Omega} A_a(x, t, \delta u, D^m u) D^a v(x, \cdot) dx$$
(2)

Furthermore we assume that $A_{\sigma}(x,t,\zeta,\xi)$ are Caratheodory functions and satisfy the following structural conditions:

Structural condition I

$$\sum_{\substack{|a|=m\\|a|\leqslant m-1}} |A_{\sigma}(x,t,\zeta,\xi)\eta_{a}| \leqslant a_{0} \sum_{\substack{|a|=|\beta|=m\\|l|\leqslant m-1}} |\lambda(x)\eta_{a}| (|\lambda(x)\xi_{\beta}|^{p-1} + |\zeta_{l}|^{\sigma/p'} + |a_{1}(x)|)$$

$$\sum_{|\sigma|\leqslant m-1} |A_{\sigma}(x,t,\zeta,\xi)| \leqslant b_{0} \sum_{\substack{|\beta|=m\\|\beta|=m\\|\beta|=m}} (|\lambda(x)\xi_{\beta}|^{p/\sigma'} + |\zeta_{l}|^{\sigma/\sigma'} + |b_{1}(x)|)$$

where $\frac{1}{p} + \frac{1}{p'} = 1$, $\frac{1}{\sigma} + \frac{1}{\sigma'} = 1$, $a_1(x) \in L^{p'}(\Omega)$, $b_1(x) \in L^{\sigma'}(\Omega)$. The condition $\lambda^{-1}(x)$

 $\in L^s(\Omega)$ implies that the equation in (1) is weakly degenerate.

Remark There is a relation between the growth factors p and σ :

$$\frac{\sigma}{\sigma'} > \frac{\sigma}{p'} > \frac{p}{\sigma'} > p-1$$