THE FIRST BOUNDARY VALUE PROBLEM FOR GENERAL PARABOLIC MONGE-AMPERE EQUATION

Wang Guanglie

(Department of Mathematics, Jilin University)

Wang Wei

(Department of Mathematics, Xiangtan Teachers College) (Received January 9,1988)

Abstract In this note we consider the first boundary value problem for a general parabolic Monge-Ampere equation

$$u_i - \log \det(D_{ij}u) = f(x,t,u,D_xu)$$
 in Q , $u = \varphi(x,t)$ on $\partial_x Q$

It is proved that there exists a unique convex in x solution to the problem from $C^{4+\beta,2+\beta/2}(\overline{Q})$ under certain structure and smoothness conditions (H3)—(H7).

Key Words General parabolic Monge-Ampere equation; first boundary value problem; classical solution.

Classifications 35K20;35K55;35Q99.

1. Introduction

In [1] it is proved that the first boundary value problem for the parabolic Monge-Ampere equation

$$\begin{cases}
-D_t u \det(D_{ij} u) = f(x,t) & \text{in } Q \\
u = \varphi(x,t) & \text{on } \partial_t Q
\end{cases}$$
(1.1)

has a unique solution in $C^{4+\sigma,2+\alpha/2}(\overline{Q})$. Here $Q=\Omega\times(0,T]$, Ω is a bounded convex domain in R^* , $\partial_*Q=(\partial\Omega\times \llbracket 0,T \rrbracket) \bigcup (\Omega\times \{t=0\})$ is the parabolic boundary of Q,T>0, $\alpha\in(0,1)$ are constants.

The aim of this note is to extend the result in [1] to the parabolic Monge-Ampere equation of more general form. We mainly discuss the first boundary value problem for the parabolic Monge -Ampere equation of the form

$$\begin{cases} D_t u - \log \det(D_{ij}u) = f(x,t,u,D_x u) & \text{in } Q \\ u = \varphi(x,t) & \text{on } \partial_t Q \end{cases}$$
 (1.2)

Hereafter, besides using the notations, terminologies and conventions in [1] [2] with-

This work was supported by NSFC.

out indication, we denote the norm in $C^{k,k/2}(\overline{Q})$ by $|\cdot|_{k,k/2}$ for $k \in \mathbb{R}$, and $D_z = (D_1, \dots, D_k)$ D_*), $D_i = \frac{\partial}{\partial r_i}$, for $i = 1, \dots, n$.

Although the corresponding extension for elliptic Monge-Ampere equation has been completed in [2] by Caffarelli, Nirenberg and Spruck, and though the idea in [2] also can be followed, there are still some differences in dealing with the parabolic counterpart. Firstly, since the "compatibility condition" should be fulfilled for the first boundary value problem in a cylindrical domain for an equation of parabolic type, the structure conditions for (1.2) given in this note are different from those for the elliptic case in [2]. Secondly, since the outward normal to the boundary of Q can not be defined at the lateral edge of the lower base of the cylinder Q, we can not use the same definition as in [2] to construct the open set S. What we have to do here is to add more restrictions on the element of $\mathscr S$ which guarantee that $\mathscr S$ is an open set in $C_0^{4,2}(\overline Q)$ (cf. Lemma 2. 7 below).

It is interesting that the structure conditions for (1.2) given in this note play an essential role in constructing S as well as in defining the topological degree.

In order to follow the idea in [2] to employ the topological degree theory a mapping must be considered. At that moment we need an existence and uniqueness theorem for the problem

$$\begin{cases}
D_t u - \log \det(D_{ij} u) = f(x,t), & \text{in } Q \\
u = \varphi(x,t) & \text{on } \partial_t Q
\end{cases}$$
(1.3)

under the hypotheses:

(H1) $F(x,t) \in C^{2+a,1+a/2}(\overline{Q}).$

(H2) φ and f satisfy the compatibility conditions

$$\begin{cases} D_t \varphi - \log \det (D_{ij} \varphi) = f(x,t) \\ D_t D_t \varphi - \varphi^{ij} D_{ij} (f + \log \det (D_{ij} \varphi)) = D_t f(x,t) \\ \text{for } (x,t) \in \partial \Omega \times \{t = 0\} \end{cases}$$

where $(\varphi^{ij}) = (D_{ij}\varphi)^{-1}$.

(H3) $Q = \Omega \times (0,T]$, where T > 0 is a constant, Ω is a uniformly convex $C^{4+\alpha}$ domain in Euclidian n space R^n , i. e. there exists a function $r(x) \in C^{4+\sigma}_{loc}(R^n)$ such that Ω $=\{x\in R^*; r(x)<0\}$ and that

$$(D_{ij}r(x)) \ge \mu I, |D_x r| \ge \mu, \text{ for } x \in \partial \Omega$$

where $a \in (0,1)$, $\mu > 0$ are constants, I is the $n \times n$ unit matrix.

(H4) $\varphi(x,t) \in C^{4+a,2+a/2}(\overline{Q}), (D_{ij}\varphi) \ge \mu I, \text{ for } (x,t) \in \overline{Q}.$

The theorem can be proved in the same way as in [1] via the results from [2]-[8], so we ommit its proof and only formulate its statement here.

Theorem 1. 1 If (H1)-(H4) hold, $a \in (0,1)$, then the problem (1.3) has a unique