GEVREY-HYPOELLIPTICITY FOR A CLASS OF PARABOLIC TYPE OPERATORS[®]

Chen Hua
(Dept. of Math., Wuhan Univ.)
(Received May 9,1988; revised January 24,1989)

Abstract This paper studies the micro-local version of the Gevrey-hypoellipticity for a class of parabolic type operator, $\partial_t - a(t,x;D_s)$ $(a(t,x;\xi) \in C^{\infty}([0,T],S^{m}_{\sigma}(R^{n}))$ $(m \ge 1/s)$ is a Gevrey-pseudoanalytic symbol of class s(s > 1), and we obtain the following main result: Under the condition (I), the operator stated above is micro-local Gevrey-hypoelliptic. In order to prove our main result, the auther have used (a, β) method in this paper.

Key Words Gevrey-hypoellipticity; wave front set in Gevrey-class; (α, β) method.

Classification 35H05.

1. Statement of Main Result

Let us consider the micro-local version of the Gevrey-hypoellipticity (more precisely Gevrey-hypoellipticity in x) for a class of parabolic type operators

$$\partial_t - a(t, x; D_x) \tag{1.1}$$

where $a(t,x;\xi) \in C^{\infty}([0,T],S^{m}_{\sigma}(\mathbb{R}^{n}))$ $(m \ge 1/s)$ is a Gevrey-pseudoanalytic symbol of class $s(s \ge 1)$, t is considered as a parameter. If $a^{(a)}_{(\beta)}(t,x;\xi) = \partial_{\xi}^{s}D^{\beta}_{x}a(t,x;\xi)$ $(\alpha,\beta \in \mathbb{Z}_{+}^{n})$, then we have the following estimate:

$$|a_{(\beta)}^{(a)}(t,x;\xi)| \leqslant C_0 a_1(\beta_1)^s C^{|a+\beta|} |\xi|^{m-|a|}, \quad \text{for } |a| \leqslant R^{-1} |\xi|^{1/s}, \quad t \in [0,T]$$
(1. 2)

where R is a suitable large number, C_0 and C are constants.

Let $a_m(t,x;\xi)$ be the principal symbol of $a(t,x;D_s)$, then condition

$$\operatorname{Re} a_{m}(0,x;\xi) \leqslant 0, \quad (x,\xi) \in \mathbb{R}^{n} \times \mathbb{R}^{n} \setminus \{0\}$$
 (1.3)

is necessary for well-posedness of the Cauchy problem for the operator (1.1) (see Mizo-hata [2]). Now we assume

(I) At
$$(x_0,\xi^0) \in \mathbb{R}^n \times \mathbb{R}^n$$
, $(|\xi^0|=1)$, $\exists \delta > 0$, such that

⁽¹⁾ Supported by the Natural Science and Young Science Foundation of Academia Sinica.

Re
$$a_m(t,x_0;\xi^0) \leqslant -\delta$$
 , $t \in [0,T]$

Then from [2], we know the operator (1,1) is locally solvable. Suppose that $u(t,x) \in C^1([0,T],D^{(s)'})$ is a local solution of equation

$$\partial_t u(t,x) = a(t,x;D_x)u(t,x) + f(t,x) \tag{1.4}$$

where $D^{(s)'}$ is the ultradistribution space of class s, and $f(t,x) \in C([0,T],D^{(s)'})$. Then we have the following main result.

Theorem Under condition (I), if $(x_0, \xi^0) \in WF_s(f(\cdot, t)), \forall t \in [0, T]$, then

$$(x_0,\xi^0) \in WF_*(u(\cdot,t)) \quad \forall \ t \in (0,T],$$

Here, the definition of the wave front set in Gevrey class $WF_s(u)$ is given in the following way:

Definition 1.1 $(x_0, \xi^0) \in WF_*(u)$, if and only if there exists a cut-off function $\psi(x) \in G^* \cap C_0^{\infty}$, taking the value 1 in a neighborhood of x_0 such that the estimate

$$|\widehat{\psi}_{u}(\xi)| \leq \exp(-\varepsilon_{0}|\xi|^{1/\varepsilon}), (\exists \varepsilon_{0} > 0)$$

$$(1.5)$$

holds when ξ tends to ∞ remaining in a suitable conic neighborhood V_{ξ^0} of ξ^0 .

By G*-pseudolocal property (see [4]), $WF_s(f(\cdot,t)) \subset WF_s(u(\cdot,t))$. So if Re $a_n(t,x;\xi)$ is strictly negative on $[0,T] \times R^* \times S^{n-1}$, then the above theorem gives

$$WF_{\bullet}(f(t, \cdot)) = WF_{\bullet}(u(t, \cdot)), \quad \forall \ t \in (0, T]$$
 (1.6)

Let Π be the projection map $(x,\xi) \rightarrow x$, then we know $\Pi(WF_s(u)) = \text{sing supp } u$ (i. e. Gevrey singular support of u), so (1.6) implies

$$\operatorname{sing supp} \ (u(t, \, \cdot)) = \operatorname{sing supp} \ (f(t, \, \cdot)), \quad \forall \ t \in (0, T] \tag{1.7}$$

We have therefore obtained the following obvious corollary:

Corollary 1. 1 Under the above condition, the operator (1.1) is Gevrey-hypoelliptic.

The main theorem also proves the microlocal Gevrey-hypoellipticity of elliptic operators.

Corollary 1. 2 Let $a(x,D_x) \in S_a^m$ be an elliptic operator, then

$$WF_s(au) = WF_s(u) \tag{1.8}$$

Proof By G^s -pseudolocal property, $WF_s(au) \subset WF_s(u)$. Let au = f(x), then u(x) satisfies the equation

$$\partial_t u = -(\bar{a}a)u + \bar{a}(x, D_x)f(x) \tag{1.9}$$