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Ahstract In this paper,a new transformation is found out to straighten the interface
s z=5C, e ([0,a1) o7, ly=s.=0> s f<I—d&,8>0,d,l=constants and a per-
turbation of the interface is considered for a two dimensional diffraction problem. And the
existence ,uniqueness and regularity of an appeoximating Muskat model are proved.
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For the stationary diffraction problemns,a ot of works have been done about the ex-

i

istence , uniqueness and regularity. In this paper, we consider a perturbation problem,i.
e. for a stationary diffraction problem, if the interface has a perturbation , what dces it

happen about the solution and how is done to get an estimate to the change of its solu-

tion? It is a very interesting problem in many suhjects such as the finite element me_thu-d
etc. As its application here, we consider an approximating Muskat Problem which is a
mwo—dimension evolutional elliptic free boundary problem and prove the existence and u-
niqueness of the solution in local. Muskat model is seen in [10].

1. Perturbation of an Interface of a Diffraction Problem

At first , we consider the perturbation of the interface of the two-dimensional linear
elliptic diffraction problem as follows:
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where




(T 2 = (i)

&y = {(z,9);0 <2< f(p),0 <y <a}

{ @) fly) <z<U,0<y<a}

F € ([0,aD, F,)csa=0,6<f<I—8, 60 Gl
ii €= GE_I_H(E“!“])! F, & GE(EE): t= 1,2

¢ € C*T°([0,a]), X € ¢'**([0,a]) aec (0,1)

0 << u;s4.,%,a,] = constants.
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1.1 Some Auxiliary Lemmas
Lemma 1.1 The boundary problem .
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has a wnigque solution and has the estimate ;
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Proof The existence ,uniqueness and regularities of the solution are trivial except
that at the corner points. For f€*t([0,a]) 2 F,(0)=F,(a) =0, so 2, can be even
extended respecting to {y=0} or {y=a}. Thus,the corner points become the boundary
beinis,and at these new boundary points,the boundary values and the boundary curve
belong to C*7°,too. So the second derivatives of & are also continuous up to the corner
points and they are e-Holder m-:ntinuit}r.

Using the Hopf boundary point lemma,[87],we have.

Lemma 1. 2 When £,,&, are fuwo constants ,and the constanis satisfy that &,<CE, ,then,
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where o depends on || f || 2,82y, M= {z=1f(gy),0="y<Ia).
lemmse .3 Jf &<TZ are two constants,then , the derivatives of the solution of the prob-
lem (1. 2) have fhe estimate
|v¢1 I =0 Ol E"1
Proof First of all,let us see an Alessandrini's result in the followingt®'*]
Theorem (H-W) Let u€ W22(Q) be a non-constant solution of
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