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Abstract Let M be a n-dimensional simply connected , complete Riemannian mani-

fold with constant negative curvature. The heat kernel on M is denoted by Hi(z.y) =
HiCr(zau)) ywhere vz, p) =dist{z, ¥ ).

We have the explicit formula of H (x,y)} for n=2,3,and the induction formula of
H*(z,y) for az=4 ", But the explicit formula is very complicated for a=4. In this papet

we give some simple and useful global estimates of H Cx.y),and apply these estimates to
the problem of eigenvalue.
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1. The Estimates of H,(7)

Suppose ky=—&", H} (r) =H;(r(z,y) ). It is well known that

HY(r) = R(dmt) =25
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So,the explicit formula for n=4 is very complicated. It is difficult to get the glob-
al estimate of H; from it,and it is more difficult to get the global lower bound.

In this section,we will give some natural,simple,and useful estimates of H(r).

Theorem 1.1 Let M be a n-dimensional simply connected complele Riemannian manifold
with comslant negative amvature —E , Hi (r)=H; (r(z,y)) is the heat kernel on M. Then
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where ¢, = (dﬂ}"fszi?‘*)ZEhih)

In order to prove this theorem »we first prove the following two lemmas.
Lemma 1.1  Suppose that £(r) =sh(kr) and

_ {1V {9 )
s(r) = (—T—J = (_f{'}“'} ) (1. 4)

Then —E:E%&(r)i-%kz.

Proof We first prove s(r)=—#% It suffices to prove
, £ = 22 (1 1)) A+ B2 ) = 0
Set F(r)=F*(r) —r*(# (")*+9*£2(r), applying

FUr) = B (e (1. 5)

and computing directly , we can obtain

FCO) = 0,F(0) = 0 and F(r) = 4853 (r) = ()
Hence

F(r) =0

Nﬁw,we prove s{r]%——%kz. It suffices to prove

ch{z)\?_ 2 g
(Eh{z}J ;F_é_(?) M a

Set

Gla)- L 2icht(zy = %:Eahzli:} s ot

we have

G0 =G0 = @) = T} =10
and
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