THE HEAT KERNEL ON CONSTANT NEGATIVE CURVATURE SPACE FORM

Li Jiayu

(Dept. of Math., Anhui University)
(Received Sept. 9,1988; revised May 29,1989)

Abstract Let M be a n-dimensional simply connected, complete Riemannian manifold with constant negative curvature. The heat kernel on M is denoted by $H_i^*(x,y) = H_i^*(r(x,y))$, where r(x,y) = dist(x,y).

We have the explicit formula of $H_i^*(x,y)$ for n=2,3, and the induction formula of $H_i^*(x,y)$ for $n \ge 4$ [1]. But the explicit formula is very complicated for $n \ge 4$. In this paper we give some simple and useful global estimates of $H_i^*(x,y)$, and apply these estimates to the problem of eigenvalue.

Key Words Constant negative curvature space form; heat kernel; eigenvalue.
Classification 58G.

1. The Estimates of $H_t^n(r)$

Suppose $k_{\rm M} = -k^2$, $H_t^*(r) = H_t^*(r(x,y))$. It is well known that

$$H_{t}^{2}(r) = k(4\pi t)^{-3/2}e^{-k^{2}t/4}$$

$$\cdot \int_{r}^{\infty} (\operatorname{ch}(k\rho) - \operatorname{ch}(kr))^{-1/2}e^{-\rho^{2}/(4t)}\rho d\rho \qquad (1.1)$$

$$H_t^3(r) = (4\pi t)^{-3/2} e^{-t^2 t} e^{-r^2/(4t)} \frac{kr}{\sinh(kr)}$$
 (1.2)

and

$$H_{\iota}^{\star+2}(r) = -\frac{1}{2\pi}e^{-\star \iota^{2}\iota} \frac{1}{k \sinh(kr)} \frac{d}{dr} H_{\iota}^{\star}(r)$$
 (1.3)

So, the explicit formula for $n \ge 4$ is very complicated. It is difficult to get the global estimate of H_i^* from it, and it is more difficult to get the global lower bound.

In this section, we will give some natural, simple, and useful estimates of $H_i^*(r)$.

Theorem 1.1 Let M be a n-dimensional simply connected complete Riemannian manifold with constant negative curvature $-k^2$, $H_t^*(r) = H_t^*(r(x,y))$ is the heat kernel on M. Then

$$(4\pi t)^{-1}e^{-k^2t/3}e^{-r^2/(4t)}\left(\frac{r}{f(r)}\right)^{1/2} \leqslant H_t^2(r) \leqslant (4\pi t)^{-1}e^{-k^2t/4}e^{-r^2/(4t)}\left(\frac{r}{f(r)}\right)^{1/2}$$

$$H_t^3(r) = (4\pi t)^{-3/2}e^{-k^2t}e^{-r^2/(4t)}\left(\frac{r}{f(r)}\right)$$

$$c_n t^{-n/2}e^{-(n-1)^2k^2t/4}e^{-r^2/(4t)}\left(\frac{r}{f(r)}\right)^{(n-1)/2} \leqslant H_t^*(r)$$

$$\leqslant c_n t^{-n/2} e^{-(n-1)nk^2t/6} e^{-r^2/(4t)} \left(\frac{r}{f(r)}\right)^{(n-1)/2}, \quad for \ n \geqslant 4$$

where $c_n = (4\pi)^{-n/2}, f(r) = \frac{\sinh(kr)}{2}$.

In order to prove this theorem, we first prove the following two lemmas.

Lemma 1.1 Suppose that $f(r) = \sinh(kr)$ and

$$s(r) = \left(\frac{1}{r}\right)^2 - \left(\frac{f'(r)}{f(r)}\right)^2 \tag{1.4}$$

Then $-k^2 \leqslant s(r) \leqslant -\frac{2}{2}k^2$.

Proof We first prove $s(r) \ge -k^2$. It suffices to prove

$$f^2(r) - r^2(f'(r))^2 + k^2r^2f^2(r) \ge 0$$

Set $F(r) = f^2(r) - r^2(f'(r))^2 + k^2r^2f^2(r)$, applying

$$f''(r) = k^2 f(r) + (0.4) + (1.5)$$

and computing directly, we can obtain

$$F(0) = 0, F'(0) = 0 \text{ and } F''(r) = 4k^2f^2(r) \ge 0$$

Hence

Since
$$c_* e^{-\sqrt{2}e^{-\sqrt{2}}}$$
 is the heat kernel $0 \le (r)^q$ if $|F(r)| \ge 0$ we have

Now, we prove $s(r) \leqslant -\frac{2}{3}k^2$. It suffices to prove

$$\left(\frac{\operatorname{ch}(x)}{\operatorname{sh}(x)}\right)^2 \ge \frac{2}{3} + \left(\frac{1}{x}\right)^2$$
, for $x > 0$

Set

$$G(x) = x^2 \cosh^2(x) - \frac{2}{3}x^2 \sinh^2(x) - \sinh^2(x)$$

we have

$$G(0) = G'(0) = G'(0) = G'(0) = 0$$

and

$$G^{(4)}(x) = \frac{32}{3} x \operatorname{sh}(2x) + \frac{8}{3} x^2 \operatorname{ch}(2x) \ge 0$$