GLOP OLUTIONS FOR A COUPLED KDV SYSTEM

He Pingfan

(Institute of Applied Physics and Computational Mathematics) (Received May 31, 1987; revised August 5, 1987)

1. Introduction

The coupled KdV system

$$\begin{cases} u_t - a (u_{xxx} + 6uu_x) - 2bvv_x = 0, \\ v_t + v_{xxx} + cuv_x = 0 \end{cases}$$
 (1. 1)

arises in physics^(1, 2), which describes the interaction of two long waves with different dispersion relations. It has been proved that system (1, 1) has two- and three-soliton solutions if there is a special relation between the dispersion relations of the two long waves.

In the present work we shall show existence and uniqueness of global solutions satisfying the periodic initial-value conditions

$$\begin{cases}
U(x + 2D, t) = U(x, t) \\
U(x, 0) = U_0(x)
\end{cases} (1. 2)$$

or the initial value condition

$$U(x, 0) = U_0(x)$$
 (1.3)

for the coupled system (1.1) in the domain $Q_T^* = \{ |x| < \infty, 0 \le t \le T \}$, where T > 0, $U(x, t) = (u(x, t), v(x, t)), U_0(x) = (u_0(x), v_0(x))$.

We shall obtain the solution to the periodic problem (1. 1), (1. 2) as a limit of solutions to the perturbed system

$$\begin{cases} u_t = -\varepsilon u_{zzzz} + a \left(u_{zzz} + 6uu_z \right) + 2bvv_z \\ v_t = -\varepsilon v_{zzzz} - v_{zzz} - cuv_z \end{cases}$$
 (1.4)

with periodic condition (1. 2). The difficult part of our development, as in all previous work on the KdV and its generalizations, is in obtaining a priori estimates for the norms of solutions to the perturbed problem. In the final section we will also state theorems for the initial-value problem (1. 1), (1. 3) analogous to the periodic initial-value problem (1. 1), (1. 2).

2. The Existence Theorem for the Perturbed Problem

Let us consider the periodic initial-value problem (1.4), (1.2). To solve the problem we linearize system (1.4) and obtain

Lemma 1 Let $U_0 \in H^2(-D, D)$ and $f \in L_2(Q_T)$ be periodic with respect to x with period 2D, where $f = (f_1, f_2)$, $Q_T = \{(x, t) : -D < x < D, 0 \le t \le T\}$, then the linear parabolic system

$$\begin{cases} u_t = -\varepsilon u_{xxx} + a u_{xxx} + f_1 \\ v_t = -\varepsilon v_{xxx} - v_{xxx} + f_2 \end{cases}$$
 (2. 1)

with the periodic initial-value condition (1.2) has one and only one solution U (x, t) and

$$\parallel U \parallel_{L_{\infty}(0,T;H^{2}(-D,D))} + \parallel U \parallel_{W_{2}^{(4,1)}(Q_{T})} \leq C_{1}(\parallel U_{0} \parallel_{H^{2}(-D,D)} + \parallel f \parallel_{L_{2}(Q_{T})})$$

(2. 2)

where C1 is a constant.

Proof From the theory on parabolic partial differential equation, we can obtain the existence of solutions to the periodic initial-value problem (2.1), (1.2).

In order to get the estimation, we take the inner product of (2.1) and U, then integrate the resultant relation over rectangular domain Q_i , we have

$$\| U(\cdot, t) \|_{L_{2}(-D, D)}^{2} + 2 \| U_{xx} \|_{L_{2}(Q_{t})}^{2} \leq \| U \|_{L_{2}(Q_{t})}^{2}$$

$$+ \| f \|_{L_{2}(Q_{t})}^{2} + \| U_{0} \|_{L_{2}(-D, D)}^{2}$$

By the Gronwall inequality, there is

$$\parallel U \parallel_{L_{\infty}(\mathbb{Q},T;L_{2}(-D,D))}^{2} \leq e^{T} \left(\parallel U_{0} \parallel_{L_{2}(-D,D)}^{2} + \parallel f \parallel_{L_{2}(\mathbb{Q}_{T})}^{2} \right)$$

Then taking the inner product of system (2.1) and vector U and integrating the resultant relation over Q_t , we obtain the expression

$$\parallel U_{zz}\left(\; \cdot \; , \; t \right) \; \parallel_{L_{2}\left(-D, \; D \right)}^{\; 2} + \varepsilon \parallel U_{zzzz} \parallel_{L_{2}\left(Q_{i} \right)}^{\; 2} \leq \parallel U_{0zz} \parallel_{L_{2}\left(-D, \; D \right)}^{\; 2} + \frac{1}{\varepsilon} \parallel f \parallel_{L_{2}\left(Q_{i} \right)}^{\; 2}$$

from which we have

$$\parallel U_{zz} \parallel_{L_{\infty}(0,T;L_{2}(-D,D))} + \varepsilon \parallel U_{zzzz} \parallel_{L_{2}(Q_{i})}^{2} \leq \parallel U_{0zz} \parallel_{L_{3}(-D,D)}^{2} + \frac{1}{\varepsilon} \parallel f \parallel_{L_{2}(Q_{i})}^{2}$$

Besides, using system (2. 1) and the above results, we can also get the estimation for $\|U_i\|_{L_2(Q_i)}$. So the inequality (2. 2) holds, which ensures the uniqueness of solution.

Corollary Let $D_x^k D_t^k f(x, t) \in L_2(Q_t)$, $U_0 \in H^{(k+4k+2)}(-D, D)$ for $k \ge 0$ and $k \ge 0$, then for the solution U to the problem (2, 1), (1, 2), we have

$$D_{x}^{k}D_{t}^{k}U\in L_{\infty}\left(0,\ T;\ H^{2}(-D,\ D)\right)\ \bigcap\ W_{2}^{(4\ 1)}\left(Q_{T}\right)$$

and the inequality analogous to the inequality (2. 2) holds.

Using lemma 1, we can show the following result:

Lemma 2 Let a+1>0, bc>0, $U_o(x) \in H^2(-D, D)$ be periodic with period 2D. Then