THE QUASILINEAR ELLIPTIC EQUATION ON UNBOUNDED DOMAIN INVOLVING CRITICAL SOBOLEV EXPONENT

for the quasilinear equations (1.1) on unbounded domain R.

Zhu Xiping

(Wuhan Institute of Mathematical Sciences, Academia Sinica)

Yang Jianfu

(Department of Mathematics, Wuhan University)
(Received January 16, 1988; revised May 28, 1988)

1. Introduction

This paper is concerned with the existence of nontrivial solution for the quasilinear elliptic equations

$$-\sum_{i=1}^{N} \frac{\partial}{\partial x_{i}} \left(|\nabla u|^{p-2} \frac{\partial u}{\partial x_{i}} \right) + a(x) |u|^{p-2} u = |u|^{p^{*}-2} u + f(x, u)$$
 (1. 1)

with zero-Dirichlet condition on R^N , where $p^* = \frac{Np}{N-p}$, f(x,0) = 0 and f(x,u) is a lower—order perturbation of $|u|^{p^*-2}u$ in the sense that $\lim_{u \to \infty} f(x,u) / |u|^{p^*-2}u = 0$.

The translation invariance of R^N is a typical difficulty in the study of elliptic equations on R^N . Indeed the translation invariance causes Sobolev embeddings lose compactness. In [1], we have given an approach to get some existence results for $p^* < \frac{Np}{N-p}$. In fact, the method in [1] is reducing the problems to local ones to gain some kinds of compactness. Note that $p^* = \frac{Np}{N-p}$ is the limiting Sobolev exponent for the embedding $W_0^{1,p}(\Omega) \subset L^{p^*}(\Omega)$, where Ω is a domain in R^N . This embedding is not compact even if it is a bounded domain. This shows that it is still difficult even if the problem is a local one. When p=2, Brezis & Nirenberg [2] have gained some existence results of equations (1.1) on bounded domains. But the method in (2) does not work anymore for quasilinear ones (i. e. p>2 case). The main difficult is the loss of weak continuity of $A_i(u) = |\nabla u|^{p-2} \frac{\partial u}{\partial x_i}$ in $W_0^{1,p}(\Omega)$ and this is crucial for quasilinear equations. In (3), for bounded domains, we have overcome this difficult by a new approach.

In this paper we develop the methods in (1) and (3) and get the existence results

for the quasilinear equations (1, 1) on unbounded domain \mathbb{R}^N . Our methods are based on the concentration-compactness principles due to P. L. Lions ((4), (5), (6)).

2. Preliminaries

We consider the problem

$$\begin{cases} -\sum_{i=1}^{N} \frac{\partial}{\partial x_{i}} \left(|\nabla u|^{p-2} \frac{\partial u}{\partial x_{i}} \right) + a(x) |u|^{p-2} u = |u|^{p^{*}-2} u + f(x, u) \\ u \in W^{1,p}(\mathbb{R}^{N}), u \not\equiv 0 \end{cases}$$

$$(2.1)$$

where $p^* = \frac{Np}{N-p}$, $N > p \ge 2$.

Suppose a(x), f(x, u) be continuous functions satisfying following conditions:

(a)
$$a(x) \ge 0, \forall x \in \mathbb{R}^N, a(x) \to \overline{a} > 0$$
 as $|x| \to +\infty$,

(b)
$$\lim_{t\to 0} f(x, t) / |t|^{p-2}t = 0$$
, $\lim_{t\to \infty} f(x, t) / |t|^{p^*-2}t = 0$, uniformly in x ,

(c)
$$\frac{1}{p}tf(x, t) \ge F(x, t) \equiv \int_0^t f(x, s) ds, \forall x \in \mathbb{R}^N, t \in \mathbb{R}$$
,

(d) $f(x, t) \xrightarrow[|x| \to +\infty]{} \bar{f}(t)$ for t bounded uniformly.

The energy functional of the problem (2. 1) is

$$I(u) = \frac{1}{p} \int_{\mathbb{R}^{N}} (|\nabla u|^{p} + a(x) |u|^{p}) dx - \frac{1}{p^{n}} \int_{\mathbb{R}^{N}} |u|^{p^{n}} dx$$
$$- \int_{\mathbb{R}^{N}} F(x, u) dx, u \in W^{1, p}(\mathbb{R}^{N})$$
(2. 2)

where $W^{1,p}(\mathbb{R}^N)$ with the norm:

$$||u|| = \left[\int_{\mathbb{R}^N} (|\nabla u|^p + a(x) |u|^p) dx \right]^{\frac{1}{p}}$$

Definition 2. 1 A sequence $\{u_{\mathbf{x}}\} \subset W^{1,r}(\mathbb{R}^N)$ is called tight, if $\forall \ e > 0$, $\exists \quad R > 0$, such that $\int_{\{|x| \ge R\}} (|\nabla u_{\mathbf{x}}|^r + |u_{\mathbf{x}}|^r) dx < e$, for all n.

Definition 2. 2 For $c \in R$, a sequence $\{u_*\}$ in $W^{1,*}(R^N)$ is called $(PS)_c$ sequence, if

$$I(u_*) \rightarrow c$$
 and $I'(u_*) \rightarrow 0$ in $(W^{1,*}(R^N))$

For fixed $c \in R$, if every $(PS)_c$ sequence is relative compact in $W^{1,p}(R^N)$, we called functional I satisfying $(PS)_c$ condition.

Let

$$I^{\infty}(u) = \frac{1}{p} \int_{\mathbb{R}^{N}} (|\nabla u|^{p} + a|u|^{p}) dx - \frac{1}{p^{*}} \int_{\mathbb{R}^{N}} |u|^{p^{*}} dx - \int_{\mathbb{R}^{N}} \overline{F}(u) dx$$

$$u \in W^{1,p}(\mathbb{R}^{N})$$
(2. 3)