THEOREM OF UPPER-LOWER SOLUTIONS FOR A CLASS OF NONLINEAR DEGENERATE PARABOLIC SYSTEMS WITHOUT QUASI-MONOTONY[®]

Bai Donghua and Liu Yi

(Department of Mathematics, Sichuan University) (Received January 5, 1988)

Abstract

In this paper we generalize the comparative method of solving some non-degenerate reaction-diffusion systems to a class of nonlinear degenerate parabolic systems without quasi-monotony, and obtain the relevant theorem of upper-lower solutions.

1. Introduction

Consider the initial boundary value problem for the following nonlinear parabolic system:

$$\begin{cases} \frac{\partial \beta_{1}(u_{1})}{\partial t} = \Delta u_{1} + f_{1}(u_{1}, u_{2}) \\ \frac{\partial \beta_{2}(u_{2})}{\partial t} = \Delta u_{2} + f_{2}(u_{1}, u_{2}) \\ u_{1}|_{\partial \Omega \times (0, T]} = h_{1}(x, t), u_{2}|_{\partial \Omega \times (0, T]} = h_{2}(x, t) \\ u_{1}(x, 0) = u_{10}(x, 0), u_{2}(x, 0) = u_{20}(x) \end{cases}$$

where $\Omega \subset \mathbb{R}^N$ is a bounded open set and $\partial \Omega$ is sufficiently smooth. When $\delta_i \leq \beta_i(s) \leq M_i$, δ_i , M_i being some positive constants independent of s, problem (I) is a non-degenerate reaction-diffusion system, for which many results of theorem of upper and lower solutions have been obtained in the cases where f_i satisfy some monotone conditions (3), (5). And this theorem has been established for f_i without quasi-monotony in (6). In this paper we shall prove a theorem of upper and lower solutions for problem (I) in the degenerate case where f_i have no quasi-monotony.

We need the following hypotheses:

① The project supported by National Science Foundation of China

(H1) $\beta_i(s)$ are continuous and monotone increasing in R^1 , $\beta_i(0) = 0$. Denote

$$\beta_i'(s) = \begin{cases} \lim_{h \to 0} & \sup \frac{\beta_i(s) - \beta_i(s-h)}{h}, & \text{if } s > 0 \\ \lim_{h \to 0} & \sup \frac{\beta_i(s+h) - \beta_i(s)}{h}, & \text{if } s < 0 \end{cases}$$

 $\beta_i(s)$ satisfy

- i) $0 < \alpha_M \le \beta_i(s)$, $\forall s \in [-M, M] \setminus \{0\}$
- ii) $\lim_{|s|\to 0} \inf \beta'_i(s) = \infty$ bus $(\infty + 0)$ so
- iii) There exists a closed neighborhood of the origin $[-\delta_0, \delta_0]$, such that $\beta_i'(s) \leq \beta_i'(r), s \in R^1 \setminus [-\delta_0, \delta_0], r \in [-\delta_0, \delta_0]$

and $\beta_i'(s)$ are monotone decreasing on $(0, \delta_0]$ and monotone increasing on $[-\delta_0, 0)$.

iv) There exist some constants $\gamma > 0$ and $\epsilon > 0$ such that for any $z \in (-\epsilon, \epsilon)$ there are

$$\frac{\beta_{i}(s+z) - \beta_{i}(z)}{s} \le \gamma \beta_{i}(s+z), \forall s \ne 0, s+z \ne 0$$
v)
$$\int_{0}^{+\infty} \frac{\beta_{i}(s)}{s} ds = +\infty$$

(H2) Denote by $\varphi_i(s)$ the inverse functions of $\beta_i(s)$, and then

$$g_i(v_1, v_2) = f_i(\varphi_1(v_1), \varphi_2(v_2)), i = 1, 2$$

are locally Lipschitz continuous with respect to $v_j (j=1, 2)$.

(H3) $h_i(x, 0) = u_{i0}(x)$, $x \in \overline{\Omega}$; and there exist continuous nondecreasing functions $\omega_{k_i}(s)$, $\omega_{k_i}(s)$, such that

$$|h_i(x_1, t_1) - h_i(x_2, t_2)| \leq \omega_{h_i}(|x_1 - x_2| + |t_1 - t_2|^{\frac{1}{2}})$$

$$|u_{i0}(x_1) - u_{i0}(x_2)| \le \omega_{s_{i0}}(|x_1 - x_2|)$$

and $h_i(x,t) \in W_2^{2,0}(Q_T)$, where $Q_T = \mathcal{Q} \times [0,T]$.

Example $\beta_i(s) = |s|^{1/m_i} \operatorname{sgn} s$, $m_i > 1$ (i = 1, 2) satisfy (H1); and when $f_i(p, q)$ are locally Lipschitz continuous, $g_i(v_1, v_2)$ satisfy (H2).

It is obvious that $\beta_i(s)$ satisfy i), ii), iii) and v) of (H1). We shall verify that $\beta_i(s)$ satisfy iv) of (H1). When there is no confusion, we write m instead of m_i .

Let

$$A(s,z) = \frac{\beta_i(s+z) - \beta_i(z)}{s\beta_i'(s+z)}$$

a) When z>0, s+z>0, or s+z<0, z<0