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1. Introduction
In order to study nonlinear PDE, the theory of paradifferential operator was
introduced by J. M. Bony in [2]. Using this theory, the propagation and interaction of
singularities of the solution of non-linear hyperbolic equations were studied by {11, [2]
and [37. This paper will use Bony’s theory on the hypoellipticity of non-linear partial
differential eguations, an abstract of main results of this paper have been published in
[&].

Consider the following nonlinear second order partial differential equations:
Fox, v, u, uw =0 | 65250 i

where z & £, £ R"is an open set; F is a real valued C™ function of real variables.
Given a real functionu € CL. (&) , p=4 ; we define

L= D ay@add+ 2, b@a;+e (1. 2)

i k==l FER

which is the linearized operator associated with the equation (1. 1) foru ; wherea, =
LTy I:,_'JI. ==t R

a () ZETF;; (2, ulz), Vulz), Viulz))
b, (x) =g§{m, ufz), Fulx), Vaul) 3 k=1, 2, ..... n (1. 3)
kS
'JL ¢ (x) =§—i{m. w(z), Vulz), Viulz))

are all real functions in Cf;%. Let us first give the following definition:

Definition 1. 1. The linear operator (1. 2) ts said to be subelliptic, tf {a, (zy) =0 for
any = & £ ; and for every compact subset K C &, there erist constants e =0, € >0, suck
that for all @ & C7 (K) | the subelliptic estimate:

el 2ci{| L, ¢ |+ el (1. 4)

holds.

Our main theorem is as follows:

Theorem 1. 2. Let u € €L, (8), p=4 be a real soltion of equation (1.1). If the
linearized operator defined by (1. 2) is subelliptic, then the solution u & O (8

If I, is a self-adjoint operator, and the subelliptic index ¢ is independent of A . Then
the consequence of theorem 1.2 is still true if we only suppose p=>d4-2e . Now it
remains to find the sufficient conditions for operator L to be subelliptic. First, if L is
elliptic, it is also subelliptic, and ¢ = 1 in this case; this is a classical result. Secondly if
operator is degenerate, of course we will consider the so-called Harmander conditions
and Oleinik-Radkevic conditions (see(5], [7]) respectively.

For general operator (1. 2), Let
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Then functions g, (x, £ (0=C j=C2n) are homogeneous of degree 1 and €™ in variable £
0, and Cf,'in variable z . Let a = (¢, «o0, &) . 0= a; = 2Zrn be a multi-index,

denote |a| =k .If p — 3= |a| ., we define
0ol & = (— 13" Mlep wom a0 Gads sl (1. 6)
to be the Poisson multi-bracket. Then function g, is a homogeneous degree 1 and €™ in &
= 0, and ¢4 *in z . We have: _
Theorem 1. 3. Let u € €%, (5 be a real solution of equation (1.1); if there exists
posifive infeger p , such that p == p + 3, and the linearized operator (1. 2) satisfies:
(i) (ap(@) =0 forallz € Q.
{(it) For any compact subset K L2, there exisls O == 0, such that:
S lgata & |P=C|E|* forall (z. & EKXRY [|=R>0 (.7
o=y
Then the linearized operalor L s subelliptic, 1. e. u € C7.
If (1. 1) is a gquasi-linear eguation, i. e.

M X+ Xa+ fz, w) =0 (1. 8)
F=1

where X; = E“#:‘ (z, w) 8y j=0, 1, coo.. m ; ay;8nd f are all €™ real valued functions

of real variables. Then replacing g, (x, £) above by
‘::-:_f (z, &) = Eﬂ” (z, ulx)) (&), j=0. 1; i m

B ]
theorem 1. 3 still holds, under the condition p = max{2, p} .

In theorem 1. 2, we need the solution u to be at least ¢'*. This condition can hardly
be improved when (1. 1) is a general non-linear and genuinely degenerate equation. C.
Zuily"? proved that there is a solution for a class of degenerate Monge-Ampére
equations, which belongs to €*%*, but not to €*. In theorem 1. 3, more smoothness for
the solution u is required. This is because that we need the coefficients of operator to be
smooth enough under our assumption, for the Poisson brackets to be definable. In order
to improve the condition in theorem 1. 3, we introduced the so-called Fefferman-Phong
condition in (97, which is kind of geometric subelliptic condition. In [9], we need only
u & &', Because of the subelliptic conditions in the preceding theorems are all given on
a linearized operator of solution u , which must be dependent on « . In [12], for Monge-
Amplre equation det (u,;) (z) = ¢ (z) , C Zuily gave a condition on function ¥ (z) ,
such that its linearized operator satisfies the condition in theorem 1. 3, this means the
condition in theorem 1. 3 may be independent of solution u under some cases. On the
other hand, we studied the boundary value problem for a class of non-linear egquation
(1. 1> in [11];and in (107, higher order equation was discussed.

The plan of this paper is as follows: In Section 2, we will prove the so-called
paralinearization theorem of equation (1. 1). Section 3 will give the proofs of theorem
1. 2 and 1. 3. Finally some degenerate cases of theorem 1. 3 will be discussed in Section
4.
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