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Abstract

We show that, for given positive parameters § and vy, the Burgers-KdV equation
f1. 5} has infinitely many static solutions satisfying given boundary cenditions (2. 1)
or {3.3). and that these solutions differ from each other mainly by their numbers of
extremum points.

1. Introduction
It iz well-known that the simplest model of the dissipation phenomenon can be

discribed with the Burgers eguation

u, A+ wu, —ypu, =0, (p =0 (lad)
which has the famous shock wave sclution :
u= A+, tanh({(—u_/ 2z ] R

where &' = x — A#, A is the wave velocity, w. =u . — A (see fig. 1. 1).
The simplest model on the dispersion phenomenon can be discribed with the KdV
efguation
u, + wu, = fu,., =10 i PR
which has the famous soliton solution (Fig. 1. 2)
w=u,, + esech®{ (125 ~Ve"(z —uLt) — ¥}/ 30D} (1. 4}
where £’ =& — (u,, +&/3)¢t {see Fig. 1. 2).

Naturally. the simplest model on the mixed effect of the dissipation and the
dispersion of a nonlinear wawve can be discribed with the mixed Burgers-K4V equation
{see(1]. C21)

w, -+ uu, — yu,, + pu,. =0 (1. 5)
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In recent years, in order to explain the phenomena of order and chaos in the fluid
dynemics, the terms of the third derivatives are suggested to be added to the classicai
Mavier-Stokes equations by some authors (see [31). If the space is one dimensional, and if
the external force and the pressure in the fluid can be neglected, then the new eguation
system of motion will be reduced to the mixed Burgers-KdV equation (1. 5).

This equation has already attracted much attention both in the field of theoretical
rescarch and in the field of application (see 11 — [B1). It has been proved that (1. &)
has a traveling wave solution, which tends to the shock wawve solution of (1. 3) when §—-
0. and which tends to the soliton solution of (1. 4) when y— 0 (see 11, C61).

Howewver, since (1.5) does not belong to any class of integrable nonlinear partial
differential equations, in comparison with other famous nonlinear wave equations, only
few properties of this equation has been studied wvery well, though the importance of this
equaton is evident and has been noticed for many years.

Besides the difficulty on the integrability, the boundary conditions of the solutions
are also a difficult problem to this equation. In fact. besides the global traveling wave, any
practical process including both of the dissipative effect and the dispersive effect can only
happen in a finite region of space. Since this equation has a third derivative with respect
to the space variable x, in order to define a well posed initial value and boundary wvalue
problem. generally speaking. three boundary values are needed. But, up to now, it has still
been being difficult to give three reasonable boundary conditions at the two ends of a
finite interval. It has been shown that the properties of the solutions depend on the
assignment of three boundary conditions sensitively (see [471).
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