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Computing Viscous Flow in an Elastic Tube
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Abstract. We have developed a numerical method for simulating viscous flow
through a compliant closed tube, driven by a pair of fluid source and sink. As is

natural for tubular flow simulations, the problem is formulated in axisymmetric

cylindrical coordinates, with fluid flow described by the Navier-Stokes equations.
Because the tubular walls are assumed to be elastic, when stretched or compressed

they exert forces on the fluid. Since these forces are singularly supported along the

boundaries, the fluid velocity and pressure fields become unsmooth. To accurately
compute the solution, we use the velocity decomposition approach, according to

which pressure and velocity are decomposed into a singular part and a remainder
part. The singular part satisfies the Stokes equations with singular boundary forces.

Because the Stokes solution is unsmooth, it is computed to second-order accuracy

using the immersed interface method, which incorporates known jump discontinu-
ities in the solution and derivatives into the finite difference stencils. The remainder

part, which satisfies the Navier-Stokes equations with a continuous body force, is

regular. The equations describing the remainder part are discretized in time us-
ing the semi-Lagrangian approach, and then solved using a pressure-free projection

method. Numerical results indicate that the computed overall solution is second-
order accurate in space, and the velocity is second-order accurate in time.
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1. Introduction

Many biological systems involve viscous flow through contracting or compliant

tubes. Such examples include blood flow, food mixing and chyme movement in in-

testine, transport of spermatozoa in cervical canal, transport of bile in bile ducts, fluid

flow through the kidney’s collecting duct that is undergoing peristaltic contracts, etc.

The interactions between the moving tubular walls and the luminal fluid can give rise
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to complex fluid dynamics. It is natural to formulate such problems in cylindrical co-

ordinates. To lower computational cost while still capturing the 3D flow features, one

may assume axisymmetry.

Numerical approaches for simulating fluid-structure interactions can be grouped

into two main categories: conforming approaches, such as the Arbitrary Lagrangian

Eulerian (ALE) method [5–7, 18, 19, 23], and non-conforming approaches. A popular

non-conforming grid method is the immersed boundary method, which was originally

developed in [21] for solving the full incompressible Navier-Stokes equations with mov-

ing boundaries, originally for studying blood flow through a beating heart [20]. Moving

boundaries are represented by means of Lagrangian markers, at which boundary forces

are computed. These forces are then transferred to an underlying Cartesian fluid grid

via a regularization using discrete (smoothed) delta functions, and the Navier-Stokes

equations are solved on the Cartesian grid.

The immersed boundary method is generally first-order accurate. To improve so-

lution accuracy, especially near the immersed boundary, Li and co-workers developed

the immersed interface method [13, 14], which captures jump discontinuities in the

solution and its derivatives sharply, and generates approximations with second-order

accuracy. The higher accuracy is achieved by incorporating jumps in the solution or

its derivatives, which can be computed from boundary forces, into the finite difference

schemes. The immersed interface method has been developed for Stokes [11, 14] and

Navier-Stokes [16,24] flows, in Cartesian [14,16] and polar [10,17] coordinates.

Recently we developed a numerical method for simulating driven Stokes flows

through a compliant closed tube, driven by a pair of internal fluid source and sink [15].

Motivated by models of blood flow through vessels, the problem is formulated in ax-

isymmetric cylindrical coordinates. The method decomposes the pressure and velocity

fields into parts due to the tubular boundary force, which is singular, and due to the

source and sink, which have compact support. Each part is computed by means of an

appropriate method that is second-order accurate, and also efficient given that charac-

teristics of that part of the solution. The singular tubular boundary force induces jump

discontinuities in the solution and its derivatives. To compute this part of the solu-

tion, we use the immersed interface method, which has not been previously applied to

cylindrical coordinates, and for which we derived the jump conditions in axisymmet-

ric cylindrical coordinates. In contrast, the solution due to the fluid source and sink

is smooth. If one is interested only in tracking the tubular wall movements, then the

source/sink-driven solution can be efficiently calculated along the tubular surface via

a boundary integral. The method is second-order accurate and robustly captures the

jump discontinuities in the overall solution and its derivatives.

The method developed in [15] is limited to creeping flows or fluid with sufficiently

high viscosity. However, many biofluid applications, such as blood flow in arteries and

arterioles, have medium to high Reynolds number and are thus more appropriately

described as Navier-Stokes flow. In the present study, we aim to extend the method

to the Navier-Stokes equations, using the velocity decomposition approach [2]. That

approach is motivated by two observations: first, the jump conditions in the solution


