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Abstract. This paper investigates the chaotic lid-driven square cavity flows at ex-
treme Reynolds numbers. Several observations have been made from this study.
Firstly, at extreme Reynolds numbers two principles add at the genesis of tiny, loose
counterclockwise- or clockwise-rotating eddies. One concerns the arousing of them
owing to the influence of the clockwise- or counterclockwise currents nearby; the other,
the arousing of counterclockwise-rotating eddies near attached to the moving (lid) top
wall which moves from left to right. Secondly, unexpectedly, the kinetic energy soon
reaches the qualitative temporal limit’s pace, fluctuating briskly, randomly inside the
total kinetic energy range, fluctuations which concentrate on two distinct fragments:
one on its upper side, the upper fragment, the other on its lower side, the lower frag-
ment, switching briskly, randomly from each other; and further on many small frag-
ments arousing randomly within both, switching briskly, randomly from one another.
As the Reynolds number Re→∞, both distance and then close, and the kinetic energy
fluctuates shorter and shorter at the upper fragment and longer and longer at the lower
fragment, displaying tall high spikes which enlarge and then disappear. As the time
t → ∞ (at the Reynolds number Re fixed) they recur from time to time with roughly
the same amplitude. For the most part, at the upper fragment the leading eddy rotates
clockwise, and at the lower fragment, in stark contrast, it rotates counterclockwise. At
Re=109 the leading eddy — at its qualitative temporal limit’s pace — appears to rotate
solely counterclockwise.
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1 Introduction

As the Reynolds number Re→∞ the temporal limit [13, p. 659] (at the Reynolds number
Re fixed and as the time t→∞) of the lid-driven square cavity flow evolves from station-
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ary to periodic and then to aperiodic, which means simply that it has definitely lost but
still resembles somewhat periodicity. Yet afterwards, it definitely looses aperiodicity and
becomes chaotic.

Specifically, for Re≤ 7,307.75, it is stationary; for 7,308≤Re≤ 13,393.5, periodic; for
13,393.75 ≤Re≤ 200,000, aperiodic. Yet afterwards, at Re= 500,000, it is chaotic. So it
switches from stationary to periodic somewhere between Re= 7,307.75 and Re= 7,308;
from periodic to aperiodic, somewhere between Re= 13,393.5 and Re= 13,393.75 [26];
from aperiodic to chaotic, somewhere between Re=200,000 and Re=500,000 [27].

Throughout, the moving (lid) top wall moves from left to right. And until Re=200,000
the leading eddy rotates solely clockwise. But at Re=500,000 it rotates sometimes clock-
wise and at other times counterclockwise, mostly equally, a competition for becoming the
leading eddy taking place before switching from each other [27].

A combination of known methods [25] is used to discretize and solve the Navier-
Stokes equations: the linear Linθ

∗-scheme [44] (a variant of the nonlinear θ-scheme [30],
[23, p. 460]), an orthogonal projection algorithm [38], the Conjugate Gradient method [12],
the Bi-CGSTAB method [50], the Fast Fourier Transform method [18,47,48], SuperLU [14]
— and the incremental unknowns method [4–11, 19–28, 31, 37, 45, 46, 49] as a spatial pre-
conditioner. The linear Linθ

∗-scheme is used for the temporal discretization — ∆t is the
time step — and a staggered marker-and-cell (MAC) mesh with finite-differences [32] is
used for the spatial discretization — h= 1/256= 0.00390625 is the spatial mesh size. At
each temporal iteration two generalized Stokes equations and two linear elliptic equa-
tions with variable coefficients must be solved.

Yet, how the temporal limit behaves for extreme Reynolds numbers — has it been
definitely reached — and what is the time needed to reach it?

To gain insight on these questions, let us consider the extreme cases Re=106, 108, 5·
108, 109. As before [26, 27], a Direct Numerical Simulation (DNS) which runs from t= 0
to a sufficiently long time t∞ simulates the flow, and then direct observations of it for the
most part past the time t∞ are at the core of the temporal limit’s study. At Re=106 as at
Re=500,000 the time step ∆t=2h=0.0078125 and t∞=150,000, a DNS involving a total of
19,200,000 temporal iterations. But at Re=108, 5·108, 109 the time step must be reduced to
∆t=h=0.00390625, and then because of computational costs, t∞ is reduced sometimes to
t∞ =50,000, a DNS involving a total of 12,800,000 temporal iterations. At each Reynolds
number two DNS are conducted: (1) fluid starting from data and (2) fluid starting from
rest. For fluid starting from data the initial condition is the numerical solution computed
at some time at a prior Reynolds number.

At extreme Reynolds numbers the flow is difficult to study mainly for two reasons.
First, for the leading eddy to switch from rotating counterclockwise to clockwise, the
DNS ought to run for a sufficiently long time interval, the switching occurring some-
where in between. But to determine what triggers the switching, it must be restarted
shortly before the switching and therefore run for a short time interval, highly likely
missing the switching. Second, all the restartings coincide at the beginning for a short
while, then progressively differ for a short while — and afterwards significantly differ,


