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Abstract. We develop an efficient, adaptive locally weighted projection regression
(ALWPR) framework for uncertainty quantification (UQ) of systems governed by ordi-
nary and partial differential equations. The algorithm adaptively selects the new input
points with the largest predictive variance and decides when and where to add new
local models. It effectively learns the local features and accurately quantifies the uncer-
tainty in the prediction of the statistics. The developed methodology provides predic-
tions and confidence intervals at any query input and can deal with multi-output cases.
Numerical examples are presented to show the accuracy and efficiency of the ALWPR
framework including problems with non-smooth local features such as discontinuities
in the stochastic space.
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1 Introduction

Uncertainty Quantification (UQ) is critical in all engineering and scientific fields. UQ is a
broad topic involving many aspects, for example, representation of uncertainty, propaga-
tion of uncertainty across scales, validation and verification for predictive computational
science, visualization of uncertainty in high-dimensional spaces and so on [1–5]. The
aim of this paper is to present a methodology for investigating the propagation of uncer-
tainty from the input space to the response space using a deterministic code. The Monte
Carlo (MC) is the traditional method for addressing such UQ tasks. Its wide acceptance
is due to the fact that it can compute the complete statistics of the solution, while having
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a convergence rate that is independent of the input dimension. Nevertheless, it quickly
becomes inefficient in high dimensional and computationally intensive problems, where
only a few samples are available.

Another well-known approach for uncertainty quantification is the spectral finite ele-
ment method [6]. It involves the projection of the response on a space spanned by orthog-
onal polynomials of the random variables and the solution of a system of coupled deter-
ministic equations involving the coefficients of the expansion in these polynomials. The
scheme was originally developed for Gaussian random variables which correspond to
Hermite polynomials (polynomial chaos (PC)). It was later generalized to include other
types of random variables (generalized PC (gPC)) [7] and then expanded to the multi-
element case. The multi-element generalized polynomial chaos (ME-gPC) method [8, 9]
decomposes the stochastic space in disjoint elements and then employs gPC on each el-
ement. The coupled nature of the resulting equations that determine the coefficients of
the polynomials make the application of the method to high input dimensions rather
difficult [10].

Another commonly used UQ method is stochastic collocation. The response is rep-
resented as an interpolative polynomial of the system response (output) in the random
input space constructed by calls to the computer code at specific input points. In [11,12],
a Galerkin based approximation was introduced alongside a collocation scheme based
on a tensor product rule using one-dimensional Gauss quadrature points. These meth-
ods do not scale well with the number of random input dimensions. To address high
dimensionality problems, various sparse grid collocation (SGC) methodologies were de-
veloped based on the Smolyak algorithm [13]. In [14], the authors developed an adaptive
hierarchical sparse grid collocation algorithm and considered a number of applications
with non-smooth behavior in the stochastic space. However, the piecewise local linear
nature of the scheme performed poorly when only a few data points were used while in-
terpolation of adverse functions was shown that it can trick the adaptive algorithm into
stopping prior to convergence.

While it is evident that a local approach to uncertainty propagation is required to
capture localized features in the stochastic space, it is essential to select within each local
model the most informative input to maximize predictive capability. In [15, 16], the au-
thors developed such kind of method, specifically, a treed Gaussian process model where
on each leaf of the tree, Bayesian Experimental Design techniques were used to learn a
multi-output Gaussian process. The active learning aspects of these Bayesian approaches
was shown to lead to better convergence than interpolation-based methods such as adap-
tive sparse grids [15].

Locally weighted projection regression (LWPR) is an algorithm for incremental non-
linear function approximation in high-dimensional spaces [17–19]. At its core, it employs
nonparametric partial least squares regression to locally approximate the relationship
between input and output. This methodology has several merits including no need to
memorize the training data, adjusting the local models only by the local information, an
ability to deal with high dimensional correlated data and providing a confidence interval


