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Abstract. A concept of ”static reconstruction” and ”dynamic reconstruction” was in-
troduced for higher-order (third-order or more) numerical methods in our previous
work. Based on this concept, a class of hybrid DG/FV methods had been developed
for one-dimensional conservation law using a ”hybrid reconstruction” approach, and
extended to two-dimensional scalar equations on triangular and Cartesian/triangular
hybrid grids. In the hybrid DG/FV schemes, the lower-order derivatives of the piece-
wise polynomial are computed locally in a cell by the traditional DG method (called
as ”dynamic reconstruction”), while the higher-order derivatives are re-constructed by
the ”static reconstruction” of the FV method, using the known lower-order derivatives
in the cell itself and in its adjacent neighboring cells. In this paper, the hybrid DG/FV
schemes are extended to two-dimensional Euler equations on triangular and Carte-
sian/triangular hybrid grids. Some typical test cases are presented to demonstrate
the performance of the hybrid DG/FV methods, including the standard vortex evo-
lution problem with exact solution, isentropic vortex/weak shock wave interaction,
subsonic flows past a circular cylinder and a three-element airfoil (30P30N), transonic
flow past a NACA0012 airfoil. The accuracy study shows that the hybrid DG/FV
method achieves the desired third-order accuracy, and the applications demonstrate
that they can capture the flow structure accurately, and can reduce the CPU time and
memory requirement greatly than the traditional DG method with the same order of
accuracy.

AMS subject classifications: 76G25, 76H05, 76M10, 76M12, 76M25

Key words: Discontinuous Galerkin method, finite volume method, reconstruction, hybrid
method.

∗Corresponding author. Email addresses: zhanglp cardc@126.com (L. P. Zhang), lw4992@gmail.com (W. Liu),
hlx cardc@126.com (L. X. He), xgdeng@skla.cardc.cn (X. G. Deng)

http://www.global-sci.com/ 284 c©2012 Global-Science Press



L. P. Zhang, W. Liu, L. X. He and X. G. Deng / Commun. Comput. Phys., 12 (2012), pp. 284-314 285

1 Introduction

While 2nd order methods are dominant in most compressible flow simulations, many
types of problems, such as computational aeroacoustics (CAA), vortex-dominant flows
and large eddy simulation (LES) of turbulent flows, call for higher order accuracy (third
order and more). The main deficiency of widely available, second-order methods for
the accurate simulations of the above-mentioned flows is the numerical diffusion and
dissipation of vorticity to unacceptable level. Applications of high-order accurate, low-
diffusion and low dissipation numerical methods can significantly alleviate this defi-
ciency of the traditional second order methods, improve predictions of vortical and
other complex, separated, unsteady flows. Therefore, various high-order methods have
been developed in the last two decades, including the essentially non-oscillatory scheme
(ENO) [1] and the weighted-ENO scheme (WENO) [2] on structured grids, the discon-
tinuous Galerkin (DG) method [3–7], the ENO and WENO schemes [8–15], the spectral
volume (SV) method [16–19], and the spectral difference (SD) method [20–22] on un-
structured grids. Interested readers can refer to the comprehensive review articles for
high-order methods by Ekaterinaris [23] on structured grids and by Wang [24] on un-
structured grids. Because the structured/unstructured hybrid grid technique presents
the trend of grid generation technique [25], due to the capability for complex geometries,
the high-order methods on unstructured and hybrid (or mixed) grids are paid much more
attention in recent years.

As the leader of high-order numerical methods for compressible flow computations in
aerospace applications, the DG methods have recently become popular for problems with
both complex physics and geometry. The DG method was originally developed by Reed
and Hill to solve the neutron transport equation [3]. The development of high-order DG
methods for hyperbolic conservation laws was pioneered by Cockburn, Shu and other
collaborators in a series of papers on the Runge-Kutta DG (RKDG) method [4–7]. Many
other researchers made significant contributions in the development. Refer to [26] for a
comprehensive review on the DG method history and literature. The most distinguished
feature of the DG methods is the ”compact” property on arbitrary grids.

However, the DG methods have a number of their own weaknesses, concentrating on
the huge computational cost (memory requirement and CPU time). The block diagonal
matrix requires a storage of (ndo f×neqs)×(ndo f×neqs)×nelems, where ndo f is the num-
ber of degrees of freedom (DOFs) for the polynomial, neqs is the number of components
in solution vector and nelems is the total cell number of the grid. For example, the storage
of this block diagonal matrix alone requires 10,000 words per element for a fourth-order
DG scheme in 3D [27]! Indeed, the lack of efficient solver is one of the bottlenecks in the
development of the DG methods for solving realistic problems.

Comparing with the traditional 2nd order DG method, the widely available 2nd order
finite volume (FV) methods, as well as the finite difference (FD) methods, need smaller
memory and computation cost, because they do not have to compute the volume inte-
grals and the additional equations for the DOFs corresponding to the derivatives. In


