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Abstract. The computation of compressible flows becomes more challenging when the
Mach number has different orders of magnitude. When the Mach number is of order
one, modern shock capturing methods are able to capture shocks and other complex
structures with high numerical resolutions. However, if the Mach number is small, the
acoustic waves lead to stiffness in time and excessively large numerical viscosity, thus
demanding much smaller time step and mesh size than normally needed for incom-
pressible flow simulation. In this paper, we develop an all-speed asymptotic preserv-
ing (AP) numerical scheme for the compressible isentropic Euler and Navier-Stokes
equations that is uniformly stable and accurate for all Mach numbers. Our idea is to
split the system into two parts: one involves a slow, nonlinear and conservative hyper-
bolic system adequate for the use of modern shock capturing methods and the other a
linear hyperbolic system which contains the stiff acoustic dynamics, to be solved im-
plicitly. This implicit part is reformulated into a standard pressure Poisson projection
system and thus possesses sufficient structure for efficient fast Fourier transform solu-
tion techniques. In the zero Mach number limit, the scheme automatically becomes a
projection method-like incompressible solver. We present numerical results in one and
two dimensions in both compressible and incompressible regimes.
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1 Introduction

We are interested in the efficient numerical simulation of unsteady compressible flows
with all range of Mach numbers. These flows arise in many physical applications, includ-
ing atmospheric modeling, magnetohydrodynamics and combustion. When the Mach
number is of order one, modern shock capturing methods provide high resolution nu-
merical approximations to shocks and other complex flow structures. However, when
the Mach number is small, near the so-called incompressible regime, there is a wide
gap between the speeds of the flow and the acoustic waves, the latter of which is of-
ten unimportant in the incompressible regime. In the incompressible regime, standard
explicit shock-capturing methods require the time step to scale inversely with the max-
imum wave speed in the system for stability, which greatly overresolves the solution in
time. Furthermore, these shock capturing methods will introduce numerical diffusions
that scale with the inverse of the wave speeds around discontinuities, which requires
overresolution in space in order to ensure that the numerical diffusion does not dominate
the solution or physical viscosity for high Reynolds number flows.

Our goal is to develop all-speed flow simulators that work in all regimes of Mach
number, including both compressible and incompressible regimes and their mixture. As
a first step, in this paper, we focus on the compressible isentropic Euler and Navier-Stokes
equations of gas dynamics. It was shown by Klainerman and Majda [23] that solutions to
these equations converge to solutions of the incompressible equations in the limit when
the Mach number goes to zero. The major difference between compressible and incom-
pressible systems lies in the pressure term. In the compressible case, the pressure is deter-
mined by the equation of state of the system and plays an important role in the flux terms
of the conservation law and is the source of the acoustic waves in the system. However,
in the limiting incompressible equations the pressure term acts as a Lagrange multiplier
to enforce the incompressibility condition and is in fact an asymptotic perturbation of the
physical pressure from the compressible equations.

The development of computational methods for nearly incompressible (small Mach
number flows) has attracted great attention for many years. Much of the early litera-
ture in this area focused on preconditioning techniques for steady state problems. In
fact, Chorin’s artificial compressibility approach [4] sought to avoid the difficulties of
the pressure term in the incompressible equations by solving a form of the compressible
low Mach number system, which has much clearer boundary conditions. It was later
recognized [31] that these ideas could be used to calculate steady states of incompress-
ible flows. Later studies applied these ideas to compute solutions to low Mach number
flow by introducing preconditioning matrices to symmetrize the system in terms of a
set of non-conservative variables [1, 14]. However, these methods assume that the flow
is already in the low Mach number regime and thus cannot accurately compute prob-
lems where the Mach number is of order unity. Guillard and Viozat [13] followed the
asymptotic analysis of Klainerman and Majda [23] to show that the artificial numerical
dissipation in upwind methods for the Euler equation are what causes the method to


