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Abstract. We propose a numerical procedure to extend to full aperture the acoustic far-
field pattern (FFP) when measured in only few observation angles. The reconstruction
procedure is a multi-step technique that combines a total variation regularized itera-
tive method with the standard Tikhonov regularized pseudo-inversion. The proposed
approach distinguishes itself from existing solution methodologies by using an exact
representation of the total variation which is crucial for the stability and robustness
of Newton algorithms. We present numerical results in the case of two-dimensional
acoustic scattering problems to illustrate the potential of the proposed procedure for
reconstructing the full aperture of the FFP from very few noisy data such as backscat-
tering synthetic measurements.
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1 Introduction

The determination of the shape of an obstacle from the knowledge of some scattered far-
field patterns (FFP), and assuming some a priori knowledge about the characteristics of
the surface of the obstacle is one of the most basic problems arising in the inverse scat-
tering field. However, this inverse obstacle problem (IOP) is very difficult to solve from
both mathematical and numerical view points due to its ill-posed nature and — to some
extent — to its nonlinearity. The numerical determination of the obstacle becomes more
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challenging when the FFP is not measured entirely around the obstacle but only in a
limited sector (limited aperture), which is the case in most applications. Nevertheless,
and because of its importance to many applications such as sonar, radar, geophysical ex-
ploration, medical imaging and nondestructive testing [1], applied mathematicians and
engineers devoted an important effort and attention, in the last three decades, to the de-
sign of solution methodologies for solving numerically IOP problems (see for example
the overview in [4] and references therein). The numerical results reported in the litera-
ture indicate that the success in the reconstruction of the sought-after shape of an obstacle
depends strongly on the quality of the given FFP measurements: the aperture (range of
observation angles) and the level of noise in the data (accuracy of measurements). In par-
ticular, there is no hope — at least by the current numerical methods — to solve the IOP
when the FFP is measured in small apertures (less than π/4) even if the data are noise
free (see for example [5–8,10] among others). Consequently, the development of numeri-
cal procedures to enrich (increase the size) the set of FFP measurements when given in a
small aperture could become a key step for solving efficiently IOP problems. Note that,
from a mathematical point of view, it is always possible to extend the FFP uniquely to the
entire circle S when given in a (continuous) subset of S. This unique determination is due
to the analyticity of the FFP [2]. However, the numerical extension from the knowledge
of a (discrete) subset of the FFP is a very challenging problem. Indeed, such extension
can be formulated as an inverse problem that is extremely ill-posed due to the analyt-
icity of the FFP. Therefore, any numerical procedure for extending (enriching) the FFP
measurements must address efficiently the ill-posed nature of this inverse problem.

Previous attempts to solve the inverse problem characterizing the extension of the
FFP were based on standard L2-Tikhonov regularization techniques on the FFP field [9]
as well on its first and second derivative [10]. The extension was (to some extent) success-
ful only when the range of measurements is given in an aperture larger than π/2. These
procedures fail to address situations of practical interest, that is when only one mea-
surement (backscattering) or very few measurements are available. Recently, the authors
suggested a multistep computational procedure that extends few measurements, such as
backscattering data, to full aperture (360o-aperture) [11]. The proposed procedure em-
ploys, in its first two steps, a regularized Newton-type algorithm where the total variation
(TV) of the FFP is incorporated to restore the stability to the inverse problem. The total
variation of the FFP, which can be viewed as the L1-norm of the first derivative of the FFP,
is evaluated at each Newton iteration approximatively using a finite difference scheme
(see Section 3.2 and the appendix in [11]). The first two-steps of the procedure allow to
extend the FFP to at least a π/2-aperture. The third step of the proposed procedure uses
a Tikhonov-type regularization technique that is known to be efficient when the data are
given on an aperture larger than π/2. The results delivered by this procedure are very
promising, especially in the presence of low levels of noise in the data. We propose in
this paper to modify this reconstruction strategy by employing an exact representation of
the total variation of the FFP. The use of such an expression is expected to retain more
stability and robustness that are needed for the convergence of the Newton algorithm


