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Abstract. In a two-dimensional (2D) photonic crystal (PhC) composed of circular cylin-
ders (dielectric rods or air holes) on a square or triangular lattice, various PhC devices
can be created by removing or modifying some cylinders. Most existing numerical
methods for PhC devices give rise to large sparse or smaller but dense linear systems,
all of which are expensive to solve if the device is large. In a previous work [Z. Hu et al.,
Optics Express, 16 (2008), 17383-17399], an efficient Dirichlet-to-Neumann (DtN) map
method was developed for general 2D PhC devices with an infinite background PhC
to take full advantage of the underlying lattice structure. The DtN map of a unit cell is
an operator that maps the wave field to its normal derivative on the cell boundary and
it allows one to avoid computing the wave field in the interior of the unit cell. In this
paper, we extend the DtN map method to PhC devices with a finite background PhC.
Since there is no bandgap effect to confine the light in a finite PhC, a different tech-
nique for truncating the domain is needed. We enclose the finite structure with a layer
of empty boundary and corner unit cells, and approximate the DtN maps of these cells
based on expanding the scattered wave in outgoing plane waves. Our method gives
rise to a relatively small and sparse linear systems that are particularly easy to solve.
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1 Introduction

Due to its periodic variation of the refractive index, a photonic crystal (PhC) [1] exhibits
unusual dispersion properties and frequency intervals (i.e., bandgaps), in which propa-
gating Bloch waves do not exist. Using the bandgap effect, waveguides and microcavities
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can be created by introducing line or point defects. In a PhC waveguide, high transmis-
sion through a sharp bend is possible [2]. Microcavities in PhCs can have very high
quality factors and small mode volumes. When waveguides and cavities are combined,
many PhC devices can be developed. Some examples are frequency filters [3], channel
drop filters [4], waveguide branches [5], waveguide couplers [3], Mach-Zehnder interfer-
ometers [6], etc. The unusual dispersion properties and nonlinear optical effects can be
used to further develop useful PhC devices.

To analyze, design and optimize PhC devices, numerical simulations are essential.
Unlike the eigenvalue problem for the band structure of a perfectly periodic and infinite
PhC, mathematical problems associated with a PhC device are boundary value problems
in the frequency domain or initial and boundary value problems in the time domain, and
they must be solved in a much larger computation domain (compared with the unit cell)
using proper boundary conditions. Although different time domain methods exist [3],
many authors have used the finite difference time domain (FDTD) method [7] for sim-
ulating PhC devices. For problems such as the propagation of a pulse in the device, a
time domain approach is essential. However, FDTD is often used for other problems,
such as the transmission and reflection spectra of a PhC device, which are more naturally
formulated in the frequency domain. One reason is that FDTD is easy to understand
and widely available in existing software packages. Another reason is that standard fre-
quency domain methods, such as the finite element [8] and finite difference (in frequency
domain) methods, often give rise to large, indefinite and complex linear systems that are
expensive to solve. However, FDTD often requires prohibitive computer resources and
produces solutions of limited accuracy.

In the frequency domain, special numerical methods can be developed to take advan-
tage of the geometric features of the PhC devices. For ideal two-dimensional (2D) PhC
devices, we can identify three geometric features: the refractive index function is piece-
wise constant, often with only two different values; the PhC and the defect structures are
often composed of circular cylinders surrounded by a homogeneous medium, where the
cylinders are either air-holes or dielectric rods; the cylinders, include the defects, often
form a square or triangular lattice. A number of existing numerical methods can take ad-
vantage at least some of these geometric features. The boundary integral equation (BIE)
method [9] can take advantage of first feature. We can formulate integral equations for
functions defined on the dielectric interfaces. The multipole method [10–13] can take ad-
vantage of the first and second features. Around a circular cylinder, we can write down
the solution in cylindrical wave expansions and solve for the coefficients. The Dirichlet-
to-Neumann (DtN) map method, first developed in [14] and [15], can take advantage of
all three features.

The DtN map of a unit cell Ω is the operator that maps the wave field to its normal
derivative on the boundary of Ω, and it can be approximated by a small matrix. Using
the DtN maps of the unit cells, we can reduce various mathematical problems for PhCs
to smaller problems on the edges of the unit cells, avoiding the interiors of the unit cells
completely. In earlier works, the DtN map technique has been applied to eigenvalue


