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Abstract. Discontinuities usually appear in solutions of nonlinear conservation laws
even though the initial condition is smooth, which leads to great difficulty in com-
puting these solutions numerically. The Runge-Kutta discontinuous Galerkin (RKDG)
methods are efficient methods for solving nonlinear conservation laws, which are high-
order accurate and highly parallelizable, and can be easily used to handle complicated
geometries and boundary conditions. An important component of RKDG methods
for solving nonlinear conservation laws with strong discontinuities in the solution is
a nonlinear limiter, which is applied to detect discontinuities and control spurious os-
cillations near such discontinuities. Many such limiters have been used in the litera-
ture on RKDG methods. A limiter contains two parts, first to identify the ”troubled
cells”, namely, those cells which might need the limiting procedure, then to replace
the solution polynomials in those troubled cells by reconstructed polynomials which
maintain the original cell averages (conservation). [SIAM J. Sci. Comput., 26 (2005),
pp. 995–1013.] focused on discussing the first part of limiters. In this paper, focused
on the second part, we will systematically investigate and compare a few different re-
construction strategies with an objective of obtaining the most efficient and reliable
reconstruction strategy. This work can help with the choosing of right limiters so one
can resolve sharper discontinuities, get better numerical solutions and save the com-
putational cost.
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1 Introduction

The Runge-Kutta discontinuous Galerkin (RKDG) methods for solving hyperbolic con-
servation laws are high-order accurate and highly parallelizable methods which can eas-
ily handle complicated geometries and boundary conditions. These methods have made
their way into the main stream of computational fluid dynamics and other areas of appli-
cations. The first DG method was introduced in 1973 by Reed and Hill [15] for the neutron
transport problem. A major development of this method was carried out by Cockburn et
al. in a series of papers [3–7], in which a framework to solve nonlinear time dependent
hyperbolic conservation laws was established. They adopted explicit, nonlinearly stable
high order Runge-Kutta time discretizations [18], DG space discretizations with exact or
approximate Riemann solvers as interface fluxes and TVB (total variation bounded) non-
linear limiter [17] to achieve nonoscillatory properties, and the method was termed as
RKDG method. We will briefly review this method in Section 2. Detailed description of
the method as well as its implementation can be found in the review paper [8].

Solutions of nonlinear hyperbolic conservation laws usually have discontinuities even
though the initial conditions are smooth, which leads to great difficulty in computing
these solutions numerically. An important component of RKDG methods for solving
conservation laws with strong shocks in the solution is a nonlinear limiter, which is ap-
plied to detect discontinuities and control spurious oscillations near such discontinuities.
Many such limiters have been used in the RKDG methods. Cockburn et al. developed
the minmod-type TVB limiter [3–7], which is a slope limiter using a technique borrowed
from the finite volume methodology. Biswas et al. proposed a moment limiter [1] which
is specifically designed for DG methods and works on the moments of the numerical so-
lution. This moment limiter was later improved by Burbeau et al. [2] and improved fur-
ther by Krivodonova [10]. There are also many limiters developed in the finite volume
and finite difference literature, such as various flux limiters [21], monotonicity-preserving
(MP) limiters [20] and modified MP limiters [16].

Although there are many limiters that we can use in the RKDG methods, none of
them is reported to be obviously better than the others for various problems. Numerical
experiments in the literature tell that different limiters usually behave differently for the
same problem and the same limiter may behave differently for different problems. There
is no guideline for people to choose a right limiter for a certain problem. So a systematic
study of limiters is necessary.

Qiu and Shu [14] adopted a new framework to devise a limiter for the RKDG meth-
ods. They divided a limiter into two separate parts. The first part is a ”troubled-cell
indicator”, which is a discontinuity detection strategy which detects the cells that are be-
lieved to contain a discontinuity and need the limiting procedure. The second part is a
solution reconstruction method which is applied only on the detected cells. The troubled-
cell indicators can come from any limiters or shock detecting techniques. Focused on the
first part of limiters, Qiu and Shu [13] presented an overview of the troubled-cell indi-
cators and made a comparison of their performance in conjunction with a high-order


