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Abstract. In this paper, we introduce a novel hybrid variational model which gen-
eralizes the classical total variation method and the wavelet shrinkage method. An
alternating minimization direction algorithm is then employed. We also prove that it
converges strongly to the minimizer of the proposed hybrid model. Finally, some nu-
merical examples illustrate clearly that the new model outperforms the standard total
variation method and wavelet shrinkage method as it recovers better image details
and avoids the Gibbs oscillations.
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1 Introduction

Digital image denoising plays an important role in numerous areas of applied sciences
such as medical and astronomical imaging, film restoration, and image/video coding.
Throughout this paper, we suppose that Ω is an open bounded set of R

2 with Lipschitz
boundary and all the images are regarded as elements in a classical space

H := L2(Ω),
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a separable infinite-dimensional real Hilbert space with usual inner product 〈·,·〉, norm
‖·‖2. Note that as every element in L2(Ω) can be regarded as a continuous linear func-
tional which maps every test function to their inner product, here we consider H as a
distributional space for convenience. Moreover, we focus on a common noisy model: an
ideal image u∈H is observed in the presence of an additive zero-mean Gaussian noise
b∈H of standard derivation σ. Thus the observed image f ∈H is obtained by

f =u+b. (1.1)

In the past decades, many denoising approaches have been proposed to handle this
ill-posed problem. One of the widely studied techniques is the wavelet shrinkage method,
which acknowledges that by applying a wavelet transform on a noisy image, random
noise will contribute mainly as small coefficients in the high frequencies. Therefore, the-
oretically one can remove much of the noise in the image by setting these small coeffi-
cients to zero. The wavelet hard shrinkage method, which shrinks the wavelet coeffi-
cients smaller than some predefined threshold in magnitude to zero, is extremely easy
and rapid to implement. Depending on the threshold, it can reduce noise rather effec-
tively. However, it also revokes unpleasant artifacts around discontinuities as a result
of Gibbs phenomenon. As artifacts in some image processing tasks may lead to great
inconveniences, the wavelet hard shrinkage can not be used in these tasks without ex-
tra efforts. A development over the wavelet hard shrinkage is the wavelet soft shrink-
age [15, 16], which diminishes significantly the Gibbs oscillation. Usually, the potential
of wavelet shrinkage methods is rather promising when they are combined with other
complex techniques which often try to take advantage of geometric information by ap-
plying wavelet-like bases better characterizing discontinuities, such as curvelets [5, 17]
which can be regarded as one of the best methods among this direction. However, none
of them can entirely efface the Gibbs oscillation.

Another important approach adopts regularization techniques and variational prin-
ciples. Usually this approach is to determine the denoised image by minimizing a cost
function consisting a data-fitting term and a regularization term

min
w∈H

1

2
‖ f −w‖2

2+βR(w), (1.2)

where R is the regularization functional and β is a positive parameter. Various possibil-
ities for R(w) have been proposed in literature and earlier efforts concentrated on least
squares based functionals such as ‖∆w‖2

2, ‖∇w‖2
2 and others. Though noise can be ad-

equately reduced, these regularization functionals also impose penalty on discontinuity,
conducting to rather smooth restoration images, with subtle details disappeared.

A better choice for R(w) was developed in [24], in which R(w) is the total variation
of w∈H commonly defined by

R(w)=TV(w) :=
∫

Ω
|Dw|, (1.3)


