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Abstract. Phase-field models provide a way to model fluid interfaces as having finite
thickness; the interface between two immiscible fluids is treated as a thin mixing layer
across which physical properties vary steeply but continuously. One of the main chal-
lenges of this approach is in resolving the sharp gradients at the interface. In this paper,
moving finite-element methods are used to simulate interfacial dynamics of two-phase
viscoelastic flows. The finite-element scheme can easily accommodates complex flow
geometry and the moving mesh strategy can cluster more grid points near the thin in-
terfacial areas where the solutions have large gradients. A diffused monitor function is
used to ensure high quality meshes near the interface. Several numerical experiments
are carried out to demonstrate the effectiveness of the moving mesh strategy.
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1 Introduction

Modeling and simulating two-phase viscoelastic flows have been challenging both math-
ematically and technically. There have been many computational techniques developed
to tackle the problem, including diffuse-interface methods [1], interface tracking meth-
ods [17], level-set methods [16, 20], finite-element methods with adaptive mesh refine-
ments [22] and spectral methods with adaptive mesh redistribution [7]. The governing
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equations require additional constitutive equations for stress tensor and numerical com-
putations require higher mesh resolution around fluid interfaces. Unlike the Newtonian
flow whose local stress is proportional to the local strain rate, for polymer fluids the local
stress usually depends on its deformation history due to the long chain molecular struc-
ture. Therefore an additional constitutive relation between the stress and the strain of
flow such as Upper Convected Maxwell (UCM) model by Oldroyd [13] should be cou-
pled into the flow system.

When comes to multi-phase flows, problems arise due to the sharp interface between
fluids. The classical jump conditions and surface tension are introduced into the Navier-
Stokes equations in which the interface has zero width. Different approaches such as
volume-of-fluid (VOF) and level-set method have been developed to handle this prob-
lem, see, e.g., [16, 20]. Compared to sharp interface methods, diffuse interface methods
are based on a different theoretical model where the interface is treated as a smooth tran-
sition region from one phase to another. The original idea can be found in [2, 3], and [1]
is a useful review of the diffuse interface model. In [12, 22], diffuse interface model is
applied for Newtonian and non-Newtonian flows.

The main challenge for simulating the phase-field evolution is that very fine meshes
are needed for resolving thin interfaces. In order to produce physically correct results one
needs a very thin interface and it is almost impossible to solve the problem practically
when using uniform meshes. In past years, many adaptive mesh techniques have been
proposed which can be classified as adaptive mesh refinement methods and adaptive
mesh redistribution methods, see [14]. In this work, we will simulate multi-phase flows
using a moving mesh method (i.e., adaptive mesh redistribution method in the sense of
[14]). In particular, we will use the moving mesh algorithms developed in Li et al. [10,11]
which redistribute mesh nodes based on harmonic mapping. The moving mesh method
based on harmonic mapping has been applied successfully to several complex problems
including incompressible flow [5,6], reaction-diffusion systems [15], and dentritic growth
[18, 19]. The goal of the moving mesh method is to reduce the computational cost and to
enhance the accuracy in resolving the diffuse interfaces.

In this work, the Oldroyd-B model for constitutive relation of viscoelastic fluids is
used. The following section will briefly review the Oldroyd-B model for viscoelastic
flow and the phase-field model for two-phase flows. Section 3 will describe the coupled
equations and the finite-element formulation used in our computations. The moving
mesh methods and the corresponding monitor function will be discussed in Section 4 and
several numerical tests will be given in Section 5. The last section draws the conclusion
with some discussions on the future works.

2 The Oldroyd-B model and the phase-field model

In this section, we will briefly review the governing equations for viscoelastic flows and
the phase-field model for multi-phase flows.


