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Abstract. We use a generalized scaling invariance of the dispersion-managed nonlin-
ear Schrodinger equation to derive an approximate function for strongly dispersion-
managed solitons. We then analyze the regime in which the approximation is valid.
Finally, we present a method for extracting the underlying soliton part from a noisy
pulse, using the resulting approximate formula.
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1 Introduction

The technique of dispersion-management (DM), developed to improve the performance
of the fiber-optic transmission lines in 1990s, has become an essential component of mod-
ern optical fiber communication systems [1,2]. Technically speaking, DM is realized
by concatenating fiber sections with different chromatic dispersion to build the trans-
mission line. Mathematically, dispersion-managed systems are described by the non-
linear Schrodinger equation (NLS) equation with periodically varying dispersion (see,
e.g., [3,4]):
ou 1 0%*u

Ju 1 *u 2
ey —|—2D(t/ta)ax2—|—\u] u=0, (1.1)

where all quantities are expressed in dimensionless units, and where, ¢ stands for the
propagation distance and x stands for time. The function D(t/t,) represents the local
value of fiber dispersion. The quantity f, appearing in Eq. (1.1) is the characteristic (di-
mensionless) distance between amplifiers, which we assume to be small compared to the
nonlinear distance and the dispersion distance; that is, t, < 1. For example, with a typical
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amplifier spacing of about 50 km and typical nonlinear distance of about 400 ~ 1000 km,
itis t, =0.05~0.125. Eq. (1.1) contains both large and rapidly varying terms and thus is
not useful for studying the long term behavior of solutions. By employing appropriate
multiple-scale expansions on Eq. (1.1), one obtains an integro-differential equation, called
dispersion-managed nonlinear Schrodinger equation (DMNLS) equation, governing the
long-term dynamics of such systems [4, 5]:
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where d is the average dispersion, and where the integral kernels R(x,x") and r(y) are
respectively,

R(x,x")=ci(x'x"/s)/(2m|s|), r(y)=sin(sy)/(47*sy).

Here the parameter s, called the reduced mapstrength, is defined by

1 r1
s=; | 1AD(@)ldc,
0
where AD(-) is the zero-mean variation [4] in d(-):
d(t/t,)=d+AD(t/t,).

By performing an appropriate nondimensionalization, the average dispersion can be nor-
malized to be d=1 in the abnormal regime [14]. In what follows, we will assume this has
been done. Moreover, Eq. (1.2) reduces to the standard NLS equation when s =0. The
DMNLS equation has been extensively studied in the literature of fiber optics [6-14].
More interestingly, certain types of mode-locked lasers are also dispersion-managed [15],
where Eq. (1.1) is again the appropriate model for the pulse dynamics [16,17]. And
it has been suggested recently that Eq. (1.2) describes the asymptotic behavior of the
pulses in these mode-locked laser systems as well. Because of the limitation of space, a
lot of physical details are left out here for both the fiber-optic communication systems
and the lasers, and interested readers are encouraged to consult the cited works and the
references therein. In many applications, the lasers are required to produce ultrashort
pulses (e.g., fetosecond) [18], which are stable and soliton-like, and hence are usually re-
ferred to as the DM solitons (DMS). From a mathematical point of view, the DMS can be
associated to either a solution of Eq. (1.1), which is localized in x and periodically varying
in ¢, or a traveling-wave solution of the DMNLS equation (1.2), which preserves its shape
during propagation [10].

Considerable efforts have been dedicated to approximations of the periodic solution
of Eq. (1.1) [19,21,22]. On the other hand, it should also be beneficial to have an ap-
proximate function of the DMS as traveling-wave solutions of the DMNLS equation.

*To avoid confusion, we only refer to the traveling-wave solutions of Eq. (1.2) as the DMS hereafter.



