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Abstract. A stable and explicit second order accurate finite difference method for the
elastic wave equation in curvilinear coordinates is presented. The discretization of the
spatial operators in the method is shown to be self-adjoint for free-surface, Dirichlet
and periodic boundary conditions. The fully discrete version of the method conserves
a discrete energy to machine precision.
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1 Introduction

The isotropic elastic wave equation governs the propagation of seismic waves caused by
earthquakes and other seismic events. It also governs the propagation of waves in solid
material structures and devices, such as gas pipes, wave guides, railroad rails and disc
brakes. In the vast majority of wave propagation problems arising in seismology and
solid mechanics there are free surfaces, i.e. boundaries with vanishing normal stresses.
These free surfaces have, in general, complicated shapes and are rarely flat.

Another feature, characterizing problems arising in these areas, is the strong hetero-
geneity of the media, in which the problems are posed. For example, on the characteristic
length scales of seismological problems, the geological structures of the earth can be de-
scribed by piecewise smooth functions with jump discontinuities. However, compared
to the wavelengths, which can be resolved in computations, the material properties vary
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rapidly. Large spatial contrasts are also found in solid mechanics devices composed of
different materials welded together.

The presence of curved free surfaces, together with the typical strong material het-
erogeneity, makes the design of stable, efficient and accurate numerical methods for the
elastic wave equation challenging. Today, many different classes of numerical methods
are used for the simulation of elastic waves. Early on, most of the methods were based
on finite difference approximations of space and time derivatives of the equations in sec-
ond order differential form (displacement formulation), see for example [1, 2]. The main
problem with these early discretizations were their inability to approximate free surface
boundary conditions in a stable and fully explicit manner, see, e.g., [10, 11, 18, 21]. The
instabilities of these early methods were especially bad for problems with materials with
high ratios between the P-wave (Cp) and S-wave (Cs) velocities.

For rectangular domains, a stable and explicit discretization of the free surface bound-
ary conditions is presented in the paper [17] by Nilsson et al. In summary, they introduce
a discretization that use boundary-modified difference operators for the mixed deriva-
tives in the governing equations. Nilsson et al. show that the method is second order
accurate for problems with smoothly varying material properties and stable under stan-
dard CFL constraints, for arbitrarily varying material properties.

In this paper we generalize the results of Nilsson et al. to curvilinear coordinate sys-
tems, allowing for simulations on non-rectangular domains. Using summation by parts
techniques, we show how to construct a corresponding stable discretization of the free
surface boundary condition on curvilinear grids. We also prove that the discretization
is stable and energy conserving both in semi-discrete and fully discrete form. As for
the Cartesian method in [17], the stability and conservation results holds for arbitrarily
varying material properties. By numerical experiments it is established that the method is
second order accurate.

The strengths of the proposed method are its ease of implementation, its (relative
to low order unstructured grid methods) efficiency, its geometric flexibility, and, most
importantly, its ”bullet-proof” stability. The proposed method is second order accurate
for materials with smoothly varying properties. However, it has been known for a long
time [14] that second order methods are less efficient than higher (4th or more) order
methods. When the material properties are only piecewise smooth (as e.g. in seismol-
ogy), the difference in efficiency between high and low order accurate methods is not as
pronounced, see, e.g., [4,9]. For such problems the formal order of accuracy (for both high
and low order methods) is reduced to one, but as has been shown in [4], the higher order
methods produce more accurate results. Although we believe that the present method is
reasonably competitive for strongly heterogeneous materials, it would be of great interest
to derive a similarly ”bullet-proof” fourth or higher order accurate method.

There are of course many other numerical methods capable of handling general ge-
ometries. Two recent finite difference methods are the traction image method for curvilin-
ear grids [22], and the embedded boundary method by Lombard et al. described in [15].
Both these methods use dissipative time-integration schemes while our method is non-


