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Abstract. In this paper, we reformulate the piecewise linear discontinuous Galerkin
(DG) method for solving two dimensional steady state scalar conservation laws in
the framework of residual distribution (RD) schemes. This allows us to propose a
new class of nonlinear stabilization that does not destroy the formal accuracy of the
schemes. Numerical results are shown to demonstrate the behavior of this approach.
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1 Introduction

We consider the scalar Cauchy problem

∂u

∂t
+divf(u)=0, x∈Ω,

u(x,t=0)=u0, x∈Ω,
u(x,t)= g(x,t), x∈∂Ω−, t>0,

(1.1)

and its steady version,
div f(u)=0, x∈Ω,
u(x)= g(x), x∈∂Ω−.

(1.2)

Here Ω is the computational domain and ∂Ω− is the inflow part of the domain boundary.
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A very popular class of numerical methods to approximate (1.1) is the discontinuous
Galerkin (DG) method [1]. It uses a finite element representation of the solution within
each element of a triangulation of Ω, and the approximation function is discontinuous
across the edges (or faces in 3D) of the mesh elements. The second ingredient is a weak
formulation of (1.1) combined with a flux formulation for the element boundary inte-
gral. The method can be shown to be intrinsically stable for a very large class of time
discretizations. When handling discontinuous solutions, an additional stabilization is
needed. Often, a nonlinear limiter is introduced, in order to mimic the nonoscillatory be-
havior of the exact solution, in the spirit of the total variation diminishing (TVD) schemes
by Harten [2]. The net effect of this is that in most cases the formal accuracy of the scheme
is destroyed not only around the discontinuities of the solution, which is not a surprise,
but also around the extrema of the solution, which is more annoying. Moreover, the
width of the discontinuities is also affected by the limiter. Of course, this picture can be
improved [3, 4], but the optimal choice of limiters is by far not known.

On the other hand, another class of schemes exists, the so-called residual distribution
(RD) schemes, see [5] for a state of the art. These schemes bear many similarities with the
stabilized finite element schemes such as the SUPG scheme [6,7], but the shock capturing
method is completely different. It is inspired by the MUSCL [8] and TVD type of schemes.

In this paper, we reformulate the DG schemes so that they can be seen as RD schemes,
and this enables us to propose a new class of nonlinear stabilization that does not destroy
the formal accuracy of the schemes. This opens an avenue toward nonlinear schemes
with h-p refinement capabilities having a parameter-free nonoscillatory behavior.

The paper is organized as follows. First we recall the standard DG schemes, then
show how the RD technique can be introduced. In order to improve the stability, a blend-
ing between this RD-DG scheme and the standard DG scheme is introduced. This is
possible thanks to the RD formulation of the standard DG scheme. Then numerical re-
sults are presented and a conclusion follows. In this paper, we illustrate the technique by
a second order accurate scheme for two dimensional scalar equations, the more general
case will be considered elsewhere.

Throughout the paper, we consider a triangulation T with triangular elements. A tri-
angulation is denoted by {Tl}l=1,nt

. We denote the vertices by {Mi}i=1,ns
. The approxima-

tion space is the space of discontinuous piecewise linear polynomials, Vh =
⊕nt

i=1P
1(Ti),

where h is the typical mesh length and P
1(Ti) is the set of polynomials of degree at most

one defined on Ti.

2 Choice of the basis functions

Consider for now a single triangle T. There are several natural bases that generate P
1(T).

If {Mj}j=1,3 denotes the set of vertices of T, the most natural one is the set of barycentric

coordinates denoted by {ΛMj
}j=1,3. They verify ΛMj

(Mk)=δk
j . The main problem of this

basis is that (i) since the elements of Vh are not continuous, it is not that natural to use the


