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Abstract. We consider high order methods for the one-dimensional Helmholtz equa-
tion and frequency-Maxwell system. We demand that the scheme be higher order even
when the coefficients are discontinuous. We discuss the connection between schemes
for the second-order scalar Helmholtz equation and the first-order system for the elec-
tromagnetic or acoustic applications.
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1 Introduction

We consider the one-dimensional linear Helmholtz equation:

d’E .,
E-l—kov(z)E:O, 2€1[0,Zmax], (1.1)
where the material coefficient v(z) is assumed piecewise-constant. In this case, the so-
lution E(z) and its first derivative dE/dz are continuous everywhere [1], whereas the
second and higher derivatives undergo jumps at the points of discontinuity of v(z). A
more complicated, nonlinear, version of Eq. (1.1) that arises in the context of nonlinear
optics was analyzed and solved numerically in [1].
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Along with the second-order equation (1.1), we consider the first-order one-dimensional
Maxwell equations in frequency space:

dE

=y (1.2)

dH
iweE= o iwnH =

where € is piecewise constant and y is constant. Eq. (1.1) with

2
w
Kv(z) =w?ep= =

can be easily obtained from system (1.2) by differentiating its second equation with re-
spect to z and then substituting the derivative dH /dz from the first equation.

It has been recognized since the pioneering work of Kreiss and Oliger [7] that wave
propagation equations require schemes with higher order accuracy due to phase errors
and long time error accumulation. They found that the optimum scheme was between
fourth- and sixth-order accurate. When the coefficients are only piecewise continuous it
becomes much more difficult to construct higher order methods that retain their global
accuracy. One approach to this difficulty has been the use of fictitious points as in the im-
mersed interface and embedded boundary methods schemes first introduced by Zhang
and LeVeque [15]. Later papers include [2,8,9,16]. An analysis of the effect of dis-
continuous coefficients on the phase and amplitude errors was done by Gustafsson and
Wahlund [4].

Our goal is to construct and test high order discrete approximations of (1.1) and (1.2)
that keep the global higher order accuracy even in the presence of discontinuities in the
coefficients. We will also examine connections between the resulting schemes similar to
the previously identified relations [3] between a system and a scalar equation.

2 Fourth-order compact scheme for the Helmholtz equation

In this section we introduce the finite volume schemes for Eq. (1.1) based on its integral
form. Let a,b € [0,Zmax], 2 <b. We integrate (1.1) between the points 2 and b with respect

to z:
dE(b) dE(a)

dz dz

b
+k3/ V(z)Edz=0. 2.1)

Eq. (2.1) can be interpreted as the integral conservation law that corresponds to (1.1). For
sufficiently smooth solutions, the two formulations are equivalent, see [1].

Following the approach in [1], we approximate the Helmholtz equation on a uniform
grid with size h by applying the integral relation (2.1) between the midpoints of every
two neighboring cells, i.e., for [a,b] =z, 1 Zi |, m=1,2,...,M. In addition, we assume
that v(z) may be discontinuous only at the grid nodes and denote by v, . 1 the value of v



