COMMUNICATIONS IN COMPUTATIONAL PHYSICS Commun. Comput. Phys.
Vol. 5, No. 5, pp. 1012-1029 May 2009

A Multi-Mesh Adaptive Finite Element
Approximation to Phase Field Models

Xianliang Hu!?, Ruo Li** and Tao Tang*

! Department of Mathematics, Zhejiang University, Hangzhou 31027, China.

2 Department of Applied and Computational Mathematics, California Institute of
Technology, Pasadena, CA 91125, USA.

3 CAPT, LMAM & School of Mathematical Sciences, Peking University, Beijing
100871, China.

* Department of Mathematics, Hong Kong Baptist University, Kowloon Tong, Kowloon,
Hong Kong.

Received 2 April 2008; Accepted (in revised version) 3 August 2008
Communicated by Jie Shen
Available online 20 October 2008

Abstract. In this work, we propose an efficient multi-mesh adaptive finite element
method for simulating the dendritic growth in two- and three-dimensions. The gov-
erning equations used are the phase field model, where the regularity behaviors of the
relevant dependent variables, namely the thermal field function and the phase field
function, can be very different. To enhance the computational efficiency, we approxi-
mate these variables on different i-adaptive meshes. The coupled terms in the system
are calculated based on the implementation of the multi-mesh h-adaptive algorithm
proposed by Li (J. Sci. Comput., pp. 321-341, 24 (2005)). It is illustrated numerically
that the multi-mesh technique is useful in solving phase field models and can save
storage and the CPU time significantly.
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1 Introduction

Dendritic growth is a main ingredient of the solidification microstructures, which has be-
come one of the most interesting research topics in recent years. Most of the theoretical
and experimental works have been devoted in understanding the mechanism of pat-
tern selection during solidification procedure, since the microscopic properties of such
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procedure are determined by the length scale of dendrites. With the development of
the theories for mathematical models of solidification, numerical simulations have be-
come a powerful tool in investigating dendritic growth. Most theories of solidification
are based on the time dependent Stefan model, which describes the evolution of ther-
mal field around the solidification interface by the well-known heat equation with two
boundary conditions: the Stefan condition [16] and the Gibbs-Thomson condition [9].
The solution of Stefan model can be approximated by that of the phase field model [4],
which avoids the task of tracking the interface. The phase field model uses a phase field
variable ¢(r), which is 1 in solid phase and —1 in liquid phase. Meanwhile, the value of
¢ decreases from 1 to —1 very rapidly within a small width W near the interface; thus the
level set ¢(r) =0 represents the interface implicitly.

It was originally shown by Caginalp and Chen [3] if W is much smaller than the cap-
illary length dy then the phase field model converges to the sharp interface limit. With
smaller value of W, more computational cost should be paid since the smallest element
parameter Ax should be much smaller than W in order to fully resolve the interface. This
requirement prevents us from using very small W which is close to the physical reali-
ties. Another limitation which seriously restricts the use of the phase field simulation is
that the interface kinetics f should be big enough to ensure the convergence due to the
Gibbs-Thomson boundary condition. But physically, it is important to simulate solidi-
fication microstructures in the limit of zero interface kinetics because most experiments
performed at low undercooling are within this limit. In 1996, Wang and Sekerka [21]
showed that the phase field simulations of dendritic growth are independent of compu-
tational parameters, but the results are only feasible in a range of large undercooling.
Karma and Rappel [9,10] demonstrated that such limitations can be less harmful by pro-
viding the understanding in their new asymptotic analysis. It is revealed that the phase
field approach can be extended to the case of arbitrary small or even zero 3, and the lim-
itation on W is not so stringent. These results made it possible to simulate more physical
cases in large interface width W and low undercooling. As an important advantage of
phase field model, it should be mentioned that its extension to three dimensional case is
straightforward.

For solving the phase field models for dendritic solidification, the finite difference
method on uniform mesh is utilized in [9, 10, 20] due to its simplicity. In the work of
Provatas et al. [15], the adaptive finite element method is applied to the phase field model
of dendritic growth in pure melt. The purpose of adaptive mesh refinement is to reduce
computational cost so that simulations of larger scale problems become possible with
currently available computational resources. In their simulations the smallest element
size 0x is much smaller than W; and the ratio of the system size to the smallest element
size is even greater than 217 Most numerical methods will fail to work in such case,
while the adaptive mesh refinement scheme can make the computation possible. The
numerical results of [15] indicated the adaptive finite element method can produce quite
satisfactory phase field solutions at high undercooling.

The thermal field u is one of the variables in the phase field model. It is interesting



