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Abstract. In this paper, we study splitting numerical methods for the three-dimensional
Maxwell equations in the time domain. We propose a new kind of splitting finite-
difference time-domain schemes on a staggered grid, which consists of only two stages
for each time step. It is proved by the energy method that the splitting scheme is un-
conditionally stable and convergent for problems with perfectly conducting boundary
conditions. Both numerical dispersion analysis and numerical experiments are also
presented to illustrate the efficiency of the proposed schemes.
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1 Introduction

In this paper we consider splitting finite difference methods for the three-dimensional
Maxwell equations
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in a lossy medium with electric permittivity ε, magnetic permeability µ, electric con-
ductivity σ and the equivalent magnetic loss rate σ∗, where E = (Ex,Ey,Ez) and H =
(Hx,Hy,Hz) denote the electric and magnetic fields. If these fields (multiplied with ε and
µ respectively) start out divergence free, they will remain so during wave propagation.
Physically this is a consequence of the relations div(εE) = ρ (where ρ is the local charge
density), and div(µH)=0. Their invariance in time is also a consequence of the Maxwell
equations (1.1)-(1.6) and need therefore not be imposed separately.

The numerical approximation of Maxwell’s equations has emerged recently as a cru-
cial enabling technology for radio-frequency, microwave, integrated optical circuits, an-
tennas, and wireless engineering [1–3, 13–15, 19, 24]. The finite-difference time-domain
(FDTD) method, first introduced by Yee [26] (also called Yee’s scheme) and extensively
utilized and refined by Taflove and others [24], has been the most widely used numer-
ical algorithm in computational electromagnetics in the time domain over the past few
decades, due to its simplicity, robustness, and low cost per grid point [24]. Yee’s scheme
employs a fully staggered space-time grid and is explicit with a second-order conver-
gence rate in both time and space. The stability and convergence analysis were carried
out for Yee’s scheme in [20, 22] using the energy method.

However, Yee’s scheme is only conditionally stable so that the time step and the spa-
tial step sizes ∆t,∆x,∆y and ∆z must satisfy the Courant-Friedrichs-Lewy (CFL) stability
condition
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in the three-dimensional case, where c = 1/
√

ǫµ is the wave velocity. If the time step is
not within the bound, the FDTD scheme will become numerically unstable. Thus, the
computation of the three-dimensional Maxwell equations by Yee’s scheme will become
extremely difficult when the spatial discretization step sizes become very small. To over-
come this difficulty, an unconditionally stable alternating direction implicit (ADI) FDTD
scheme was first proposed in [27] and [21] for the three-dimensional Maxwell equations
with an isotropic medium (see also [24]). This ADI-FDTD scheme consists of only two


