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Abstract. Three dimensional free-decaying MHD turbulence is simulated by lattice
Boltzmann methods on a spatial grid of 8000° for low and high magnetic Prandtl
number. It is verified that V-B =0 is automatically maintained to machine accuracy
throughout the simulation. Isosurfaces of vorticity and current show the persistence of
many large scale structures (both magnetic and velocity) for long times — unlike the
velocity isosurfaces of Navier-Stokes turbulence.
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1 Introduction

Here we examine free decaying 3D magnetohydrodynamics (MHD) by a mesoscopic al-
gorithm that, unlike standard computational fluid dynamic (CFD) algorithms, is amenable
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to massive parallelization [1]. Indeed, our lattice Boltzmann (LB) code [1] has had a sus-
tained performance of 26.25 TFlops/s on 4800 PEs of the Earth Simulator — i.e., 67% of
peak and outputting 0.25 TB of data. Moreover, the V-B =0 constraint is automatically
enforced, thus side-stepping the need for divergence cleaning. Our work is a generaliza-
tion of the seminal 2D LB-MHD algorithm of Dellar [2].

The basic idea behind the LB method [3,4] is to project the desired nonlinear macro-
scopic system into a higher dimensional phase space with the resulting kinetic system
simpler to solve and readily parallelized. The difficult nonlinear convective derivatives
u-Vu, u-VB,--- (where u is the fluid velocity and B the magnetic field) of CFD are now
replaced by simple linear advection (a shift operation) and local collisional relaxation in
phase space. On performing the Chapman-Enskog long-time long-wavelength asymp-
totics [2-4] on the discretized LB system, one recovers the MHD equations to leading
order in the Knudsen number and thus relating the MHD transport coefficients to the re-
laxation parameters in the BGK collision operators of LB. The essential point is that non-
local macroscopic gradients, like the mean strain rate or V-B, are computed at the meso-
scopic LB level by simple local moments of the distribution functions. To recover [2-4] the
Navier-Stokes equation, one need only introduce a scalar distribution function f(x,¢,t)
whose zeroth moment yields the density and first moment yields the momentum. The
importance of Dellar’s work [2] was his introduction of a vector distribution function
g(x,¢,t) whose zeroth moment defines the magnetic field B.

One minimizes the computational memory requirements resulting from the transfor-
mation from (x,t)- to (x,¢,t)-space by a clever choice of discretization of ¢-space. In par-
ticular, it has been shown [3,4] that one can recover the 3D Navier-Stokes equation with
a 15-bit discretization of {-space. One must also consider the numerical stability of LB
— especially as one pushes to smaller and smaller transport coefficients — since LB is an
explicit, second order accurate scheme. In its simplest formulation [3,4], there are no con-
straints imposed on the discretized velocity distribution function f,(x,t) to maintain its
positive definiteness throughout the simulation. Recently this problem has been success-
fully addressed for the Navier-Stokes equation [5-11] by imposing an entropy constraint
on the discretized f,(x,t) to enforce positive-definiteness. This has resulted in an entropic
lattice Boltzmann (ELB) scheme that is unconditionally stable. An outstanding problem
is whether a similar ELB scheme can be devised to LB MHD.

In Section 2, we briefly introduce the LB and ELB schemes for Navier-Stokes tur-
bulence and introduce the lattice discretization of ¢-space by a 15-, 19- or 27-velocities
at each spatial node. We then introduce our 3D LB MHD representation. The paral-
lelization and performance our LB schemes on various supercomputer architectures is
discussed in Section 3. In Section 4 we first present some of our basically fully resolved
ELB simulations for Navier-Stokes turbulence on a 1600 x 1600 x 1600 spatial grid at a
Reynolds number of 25000. These simulations clearly indicate intermittency [12] in the
turbulence by the deviation of the energy spectrum from the k=5/3 Kolmogorov spec-
trum. In Section 4.2, we present LB-MHD simulations on a 1800 x 1800 x 1800 spatial grid
for magnetic Prandtl number Pr=0.3 and Pr = 3.0, where Pr is the ratio of the viscosity



