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Abstract. We present discretization and solver methods for a model of the solid-gas
phase in a crystal growth apparatus. The model equations are coupled Eulerian and
heat-transfer equations with flux boundary conditions. For a more detailed discussion
we consider simpler equations and present time- and space-decomposition methods as
solver methods to decouple the multi-physics processes. We present the error analysis
for the discretization and solver methods. Numerical experiments are performed for
the Eulerian and heat-transfer equation using decomposition methods. We present
a real-life application of a crystal growth apparatus, based on underlying stationary
heat conduction. Finally we discuss further error analysis and application to a more
complex model of crystal growth.
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1 Introduction

The modelling and numerical simulation of the solid-gas phase in complex apparatuses
have become interesting tools for the improved design and optimization of numerous
industrial processes such as crystal growth, for example by the physical vapour trans-
port (PVT) method [25]. Because of the complex processes, a careful study is important
for the correct design of numerical simulations [36]. The combination of discretization
and solver methods is therefore an important task. We propose decomposition meth-
ods to break down complicated multi-physics into simpler physics. Time decomposition
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methods, and their extended versions with more stable behaviour, are based on operator-
splitting methods [14]. With these methods a useful decoupling of the time-scales is pos-
sible and the solvers can be applied on these different time-scales. Space decomposition
methods are based on Schwarz waveform relaxation methods and their accurate error es-
timates [10]. These methods decouple into domains with the same equation parameters.
Therefore effective spatial discretization and solver methods are applicable.

The paper is organized as follows: The mathematical model is stated in Section 2, the
space discretization methods are performed with finite volume discretization and are de-
scribed in Section 3. The time-discretization and decomposition methods are described
in Sections 4 and 5. In Section 6 we describe the numerical experiments in which we ver-
ify our decomposition methods and simulate a realistic crystal-growth apparatus. Future
work and the Conclusions are presented in Section 7.

2 Mathematical model

The motivation for this study comes from the technical demand to simulate a crystal
growth apparatus for single SiC crystals. The single crystals are highly valued materials
for opto-electronics and electronics [34]. The silicon carbide (SiC) bulk single crystal is
produced by a growth process through physical vapour transport (PVT), called the mod-
ified Lely method. The modelling of the thermal processes within the growth apparatus
is done by [26] and [37]. The underlying equations of the model are as follows:

a.) In this work, we assume that the temperature evolution inside the gas region Ωg

can be approximated by considering the gas to be pure argon. The reduced heat equation
is

ρg∂tUg −∇·(κg∇T)=0, (2.1)

Ug = zAr RAr T, (2.2)

where T is the temperature, t is the time, and Ug is the internal energy of the argon
gas. The density of the argon gas is ρg, κg denotes the thermal conductivity, zAr is the
configuration number, and RAr is the gas constant for argon.

b.) The temperature evolution inside the region of solid materials Ωs, for example in-
side the silicon carbide crystal, the silicon carbide powder, the graphite, and the graphite
insulation, is described by the heat equation

ρs ∂tUs −∇·(κs∇T)= f , (2.3)

Us =
∫ T

0
cs(S)dS, (2.4)

where ρs is the density of the solid material, Us is the internal energy, κs is the thermal
conductivity, and cs is the specific heat. Here, f represents the heat source in the material
Ωs.


