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Abstract. The numerical approximation of high frequency wave propagation is im-
portant in many applications. Examples include the simulation of seismic, acoustic,
optical waves and microwaves. When the frequency of the waves is high, this is a
difficult multiscale problem. The wavelength is short compared to the overall size of
the computational domain and direct simulation using the standard wave equations is
very expensive. Fortunately, there are computationally much less costly models, that
are good approximations of many wave equations precisely for very high frequencies.
Even for linear wave equations these models are often nonlinear. The goal of this pa-
per is to review such mathematical models for high frequency waves, and to survey
numerical methods used in simulations. We focus on the geometrical optics approx-
imation which describes the infinite frequency limit of wave equations. We will also
discuss finite frequency corrections and some other models.
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1 Introduction

In this review we consider numerical simulation of waves at high frequencies, and the
underlying mathematical models used. For simplicity we will mainly discuss the linear
scalar wave equation,

utt−c(x)2∆u=0, (t,x)∈R
+×Ω, Ω⊂R

d, (1.1)

where c(x) is the local speed of wave propagation of the medium. We complement
(1.1) with initial or boundary data that generate high-frequency solutions. The exact
form of the data will not be important here, but a typical example would be u(0,x) =
A(x)exp(iωk·x) where |k| = 1 and the frequency ω ≫ 1. With slight modifications,
the techniques we describe will also carry over to systems of wave equations, like the
Maxwell equations and the elastic wave equation.

When the frequency of the waves is high, (1.1) is a multiscale problem, where the
small scale is given by the wavelength, and the large scale corresponds to the overall size
of the computational domain. In the direct numerical simulation of (1.1) the accuracy of
the solution is determined by the number of grid points or elements per wavelength. The
computational cost to maintain constant accuracy grows algebraically with the frequency,
and for sufficiently high frequencies, direct numerical simulation is no longer feasible.
Numerical methods based on approximations of (1.1) are needed.

Let us mention before continuing that this multiscale problem is prevalent in many
applications for different types of waves: elastic, electromagnetic as well as acoustic. Seis-
mic wave propagation, for instance, is a challenging elastic wave problem. Both the for-
ward and the inverse problems are of great interest and high frequency approximations
must be used when the relative wavelength is short. In computational electromagnetics
(CEM) radiation and scattering problems, such as radar cross section (RCS) computa-
tions, are important. Electromagnetic waves emitted by communication or radar devices
often have a very small wavelength compared to the size of the scatterer, which can be an
entire aircraft. For acoustic problems high frequency techniques become interesting, for
instance, in underwater acoustics where waves of moderate frequency travel over very
large distances.

Fortunately, there exist good approximations of many wave equations precisely for
very high frequency solutions. In this paper we mainly consider variants of geometrical
optics, which are asymptotic approximations obtained when the frequency tends to in-
finity. These approximations are widely used in applications. Instead of the oscillating
wave field the unknowns in standard geometrical optics are the phase and the amplitude,
which typically vary on a much coarser scale than the full solution. Hence, they should
in principle be easier to compute numerically.

Geometrical optics can be formulated in several different ways. Assuming the solu-
tion can be approximated by a simple wave,

u(t,x)≈A(t,x)eiωφ(t,x), (1.2)


