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Abstract. We develop an embedded boundary finite difference technique for solving
the compressible two- or three-dimensional Euler equations in complex geometries on
a Cartesian grid. The method is second order accurate with an explicit time step de-
termined by the grid size away from the boundary. Slope limiters are used on the em-
bedded boundary to avoid non-physical oscillations near shock waves. We show com-
puted examples of supersonic flow past a cylinder and compare with results computed
on a body fitted grid. Furthermore, we discuss the implementation of the method for
thin geometries, and show computed examples of transonic flow past an airfoil.
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1 Introduction

This paper describes an embedded boundary finite difference method for solving the
time-dependent compressible Euler equations external to a two- or three-dimensional
object. In an embedded boundary approach the computational domain is discretized
on a regular Cartesian grid and the boundary intersects the grid in an arbitrary fashion.
Compared with boundary fitted structured or unstructured grid approaches, the biggest
advantages of the embedded boundary method are the simplicity by which the grid can
be generated as well as the efficiency and simplicity of the numerical method due to the
Cartesian grid. The main challenge with the embedded boundary method is to accu-
rately satisfy the boundary conditions while retaining stability of the resulting scheme.
The proposed method is based on the second order accurate node-based discretization
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technique for the wave equation in second order differential form subject to Dirichlet or
Neumann boundary conditions [9–11]. Of particular interest for practical purposes is
that these methods are explicit in time, but do not suffer from small-cell stiffness.

For the Euler equations, zero flux conditions are enforced on solid boundaries by
combining Dirichlet and extrapolation conditions on different components of the solu-
tion. The Dirichlet components could in principle be approximated by the boundary
condition in [9]. However, to avoid unphysical oscillations near shock waves we com-
bine that technique with slope limiters to obtain a new zero flux boundary condition for
embedded boundaries. The resulting method is formally second order accurate at the
embedded boundary away from shock waves and smooth extrema, uses a finite differ-
ence formulation for the spatial discretization and is explicit in time, where the stability
limit on the time step is based on the grid size away from the boundary.

Most previous work on embedded boundary methods for the compressible Euler
equations are based on the finite volume formulation. At the embedded boundary, a
naive finite volume discretization leads to an explicit time step that is limited by the
smallest cell cut by the boundary. To overcome this so called “small cell problem”, the
method in [14] uses a modified non-conservative approximation at the boundary com-
bined with a mass redistribution procedure after each time step [4] to achieve global
conservation. Another way to overcome the small cell problem is provided by the h-box
method, which is described in [1] and extended to multi-dimensional problems in [7, 8].
An h-box is a larger control volume which is used for computing the flux on the side
of a small cell. The one-dimensional h-box method is shown in [1] to be conservative,
second order accurate, and having a time step which is not affected by small cut cells.
For a simplified but less accurate approach, also see [2]. A third finite volume embed-
ded boundary approach avoids the small cell problem by introducing uncut ghost cells
around the boundary [5]. This method is second order accurate, but conservation has
not been established. A fourth way of overcoming the small cell stiffness is provided by
merging small cells at the embedded boundary with larger neighboring cells [3].

There is a large literature on embedded or immersed boundary methods for incom-
pressible flow problems, see for example [12, 15] and the references therein. In these
methods the immersed boundaries are often evolving material interfaces. Some of the
boundary interpolation techniques are similar to what is used for compressible flows,
but the incompressible problem is somewhat easier due to the absence of shock waves.

The remainder of the paper is organized as follows. The discretization of the Eu-
ler equations on a Cartesian grid is described in Section 2, and the discretization of the
boundary conditions is developed in Section 3. In Section 4, we evaluate the perfor-
mance of the method on several external flow problems. In the first numerical example
we compare the accuracy of the computed solution at the embedded boundary with re-
sults obtained on a body fitted grid. Issues with the sharp trailing edge of an airfoil are
discussed in Section 4.1 and the conservation properties of our method are investigated
in Section 4.2. The embedded boundary discretization is extended to three space dimen-
sions in Section 4.3 and conclusions are given in Section 5.


