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Abstract. Hyperbolic balance laws have steady state solutions in which the flux gradients are
nonzero but are exactly balanced by the source terms. In our earlier work [31–33], we designed
high order well-balanced schemes to a class of hyperbolic systems with separable source terms.
In this paper, we present a different approach to the same purpose: designing high order
well-balanced finite volume weighted essentially non-oscillatory (WENO) schemes and Runge-
Kutta discontinuous Galerkin (RKDG) finite element methods. We make the observation that
the traditional RKDG methods are capable of maintaining certain steady states exactly, if a
small modification on either the initial condition or the flux is provided. The computational
cost to obtain such a well balanced RKDG method is basically the same as the traditional
RKDG method. The same idea can be applied to the finite volume WENO schemes. We
will first describe the algorithms and prove the well balanced property for the shallow water
equations, and then show that the result can be generalized to a class of other balance laws.
We perform extensive one and two dimensional simulations to verify the properties of these
schemes such as the exact preservation of the balance laws for certain steady state solutions,
the non-oscillatory property for general solutions with discontinuities, and the genuine high
order accuracy in smooth regions.
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1 Introduction

In this paper, we are concerned with the construction of high order well balanced weighted essen-
tially non-oscillatory (WENO) finite volume schemes and Runge-Kutta discontinuous Galerkin
(RKDG) finite element methods for solving hyperbolic balance laws, which have attracted sig-
nificant attention in the past few years. Hyperbolic balance laws are hyperbolic systems of
conservation laws with source terms:

ut + f1(u, x, y)x + f2(u, x, y)y = g(u, x, y) (1.1)

or in the one dimensional case

ut + f(u, x)x = g(u, x) (1.2)

where u is the solution vector, f1(u, x, y) and f2(u, x, y) (or f(u, x)) are the fluxes and g(u, x, y)
(or g(u, x)) is the source term.

An essential part for these balance laws is that they often admit steady state solutions in
which the flux gradients are exactly balanced by the source term. A straightforward treatment
of the source terms in a numerical scheme will fail to preserve this balance. Many physical
phenomena come from small perturbations of these steady state solutions, which are very difficult
to capture numerically, unless the numerical schemes can preserve the unperturbed steady state
at the discrete level. Schemes which can preserve the unperturbed steady state at the discrete
level are the so called well balanced schemes. Our purpose is to design well balanced schemes
without sacrificing the high order accuracy and non-oscillatory properties of the scheme when
applied to general, non-steady state solutions.

Balance laws have many applications in the physical world. A typical and extensively consid-
ered example is the shallow water equations with a non flat bottom topology. Many geophysical
flows are modeled by the variants of the shallow water equations. In one space dimension, they
take the form
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
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ht + (hu)x = 0

(hu)t +

(

hu2 +
1

2
gh2

)

x

= −ghbx,
(1.3)

where h denotes the water height, u is the velocity of the fluid, b represents the bottom topog-
raphy and g is the gravitational constant. The steady state solutions are given by

hu = constant and
1

2
u2 + g(h + b) = constant. (1.4)

People are particularly interested in the still water stationary solution, denoted by

u = 0 and h + b = constant. (1.5)

Bermudez and Vazquez [4] first introduced the concept of the “exact C-property”, which means
that the scheme is “exact” when applied to the still water stationary solution (1.5). Also,
they introduced the first order Q-scheme and the idea of source term upwinding to obtain such


