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Abstract. We review the level set methods for computing multi-valued solutions to
a class of nonlinear first order partial differential equations, including Hamilton-Jacobi
equations, quasi-linear hyperbolic equations, and conservative transport equations with
multi-valued transport speeds. The multivalued solutions are embedded as the zeros of
a set of scalar functions that solve the initial value problems of a time dependent partial
differential equation in an augmented space. We discuss the essential ideas behind the
techniques, the coupling of these techniques to the projection of the interaction of zero
level sets and a collection of applications including the computation of the semiclassical
limit for Schrédinger equations and the high frequency geometrical optics limits of linear
wave equations.
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1 Introduction

In the computation of wave propagation, when the wave field is highly oscillatory, direct
numerical simulation of the wave dynamics can be prohibitively costly and approximate
models for wave propagation must be used. The resulting approximate models are of-
ten nonlinear, and the corresponding classical entropy or viscosity type solutions are not
adequate in describing the wave behavior beyond the singularity, where multi-valued so-
lutions in physical space are needed. Therefore, capturing multi-valued solutions by ef-
ficient algorithms is an important issue. Examples include dispersive waves [30, 40, 62],
optical waves [17, 18], seismic waves [23,57,61], semiclassical limits of Schrodinger equa-
tions [10,33,56], electron beam modulation in vacuum electronic devices [41], etc. More
applications arise constantly.

The level set method has been a highly successful computational technique for cap-
turing the evolution of curves and surfaces [49,50] with applications in diverse areas such
as multi-phase fluids, computer vision, imaging processing, optimal shape design, etc.
This paper reviews a newly developed level set framework for the computation of multi-
valued solutions of a large class of nonlinear PDEs that are encountered in various high
frequency wave propagation problems mentioned above. We hope that this article will
help the community understand how ideas of the level set method have been used in this
challenging area, and the problems that remain in extending this method to other physical
applications.

1.1 Asymptotic methods

We consider a complex wave field u¢(z,t) governed by a linear wave type equation, say

the Schrodinger equation
2

leuy = —%AUE + V(z)us,

where V (z) is a given potential, and € > 0 denotes a re-scaled Planck constant. Here the
regime of interest is the so called semiclassical approrimation where € tends to zero. A
widely used classical approach is the so called WKB method or geometrical optics, which
uses asymptotic approximations obtained when the small scale goes to zero.

The derivation of the WKB system comes through a formal expression

u(x,t) = A%(z,t) exp(iS(z,t)/€). (1.1)

Assuming that the phase S and the amplitude A€ are sufficiently smooth, we expand the
amplitude in powers of e:

A6:A0+€A1+62A2+'-' .

Insertion of this expression into the underlying linear wave equation and balancing terms
of O(1) order in € gives separate equations for A and S.



