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Abstract

The orthogonal nonnegative matrix factorization (ONMF) has many applications in a

variety of areas such as data mining, information processing and pattern recognition. In

this paper, we propose a novel initialization method for the ONMF based on the Lanc-

zos bidiagonalization and the nonnegative approximation of rank one matrix. Numerical

experiments are given to show that our initialization strategy is effective and efficient.
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1. Introduction

Let m and n be two integers, denote by R
m,n
+ the set of all m × n nonnegative matrices.

The nonnegative matrix factorization (NMF) problem means that for given A ∈ R
m,n
+ and

k ≪ min(m,n), finding W ∈ R
m,k
+ and H ∈ R

k,n
+ such that

A ≈ WH. (1.1)

That is, finding two nonnegative matrices of low rank W and H , such that their product is

an approximation of a given nonnegative matrix A in some distance metrics (in this paper,

the distance metric will be the Frobenius norm ‖.‖F ) [14]. The NMF, or approximation of

a nonnegative matrix, has become a useful tool in a large applications, such as, images pro-

cessing, text mining and space situation alertness. Scientific literature and soft tools [4] on

the subject and variants thereof are rapidly expending. The orthogonal nonnegative matrix

factorization (ONMF), where an orthogonality constraint is imposed on a factor (W or H) in

the decomposition (1.1), was shown to provide a more clear interpretation on a link between

clustering and matrix decomposition [5]. Multiplicative updates for the NMF with preserving

orthogonality were recently proposed in [3]. Numerical experiments on face image data for an

image representation task show that the ONMF algorithm preserves the orthogonality, while
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the goodness-of-fit (GOF) is minimized. In [3], the GOF is compared with standard NMF. As

this is not the point of this paper, we will not describe it in details.

To speed up the convergence of the NMF methods and the minimization of the objective

function, most research papers to date for the NMF algorithms have discussed the need to

investigate good initialization strategies [1]. However, few of them mentioned the initialization

of the ONMF. Therefore, in this paper, we propose a novel initialization algorithm for the

ONMF based on the Lanczos algorithm and nonnegative approximation of rank one matrices

(see [2]). The proposed algorithm has some good features: it can be combined with all ONMF

algorithms and allows a little randomization by free choice of the initial vectors in the Lanczos

process. Moreover, our initialization can preserve some original information from given data.

From our numerical experiments, it is seen that the initialization algorithm work effectively and

efficiently.

The rest of this paper is organized as follows. Section 2 reviews the Lanczos bidiagonalization

process to get a low-rank approximation of a nonnegative matrix. Section 3 presents and

analyzes our algorithm. In section 4, we give some numerical experiments to demonstrate our

algorithms. The last section provides some conclusion.

2. Lanczos Bidiagonalization

Since the ONMF is a constrained low-rank approximation problem of a matrix, we need to

seek an initialization strategy among alternative low-rank factorizations. For such a problem,

the following Eckart-Young theorem [12] is important.

Theorem 2.1. Let A ∈ R
m,n have the singular values decomposition (SVD)

A = PΣQT , Σ = diag(σ1, σ2, · · · , σn) ∈ R
m,n,

where σ1 ≥ σ2 ≥ · · · ≥ σn ≥ 0 are the singular values of A, P ∈ R
m,m and Q ∈ R

n,n are

orthogonal matrices. Then for 1 ≤ r ≤ n, the matrix

Ar = Pdiag(σ1, · · · , σr , 0, · · · , 0| {z }
n−r

)QT (2.1)

is a global minimize of the optimization problem

min
n
‖A−B‖2F |B ∈ R

m,n, rank(B) ≤ r
o

(2.2)

with the corresponding minimum value
Pn

i=r+1 σ
2
i . Moreover, if σr > σr+1, then Ar is the

unique global minimizer.

It follows from Theorem 1 that once the SVD of a matrix A is available, the best rank r

approximation Ar of A is easily computed. When A is large, however, computing the SVD of

A can be costly. If we are only interested in some Ar with r ≪ min(m,n), the computation

of the complete SVD of A is rather wasteful. It is therefore desirable to develop less expensive

alternatives for computing a good approximation of Ar. In this section, we show that we can

obtain a good low-rank nonnegative approximation of a nonnegative matrix A directly from

the Lanczos bidiagonalization process without computing the SVD of A.

In the following, we describe the Lanczos bidiagonalization process presented in [11, 20].


