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Abstract

In this paper, we consider a class of the stochastic linear complementarity problems

(SLCPs) with finitely many elements. A feasible semismooth damped Gauss-Newton al-

gorithm for the SLCP is proposed. The global and locally quadratic convergence of the

proposed algorithm are obtained under suitable conditions. Some numerical results are

reported in this paper, which confirm the good theoretical properties of the proposed al-

gorithm.
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1. Introduction

Assume that (Ω,F ,P) is a probability space with Ω ⊆ ℜn, where the probability distribution

P is known. The stochastic linear complementarity problem (see [1–10]) is to find a vector

x ∈ ℜn such that

x ≥ 0, M(ω)x+ q(ω) ≥ 0, xT
[

M(ω)x+ q(ω)
]

= 0, a.e. ω ∈ Ω, (1.1)

where Ω ⊂ ℜn is the underlying sample space and ω ∈ Ω is a random vector with given

probability distribution P and, for each ω, M(ω) ∈ ℜn×n and q(ω) ∈ ℜn.

Problem (1.1) is usually denoted by SLCP(M(ω), q(ω)) or SLCP, briefly. If Ω is a singleton,

SLCP reduces to the intensively studied and standard linear complementarity problem (denoted

by LCP); see [11–14].

In general there is no vector x satisfying (1.1) for all ω ∈ Ω. In order to obtain a reasonable

solution of Problem (1.1), there have been several types of models being proposed. One of them

is the expected value (EV) model [15] that formulates (1.1) as follows: Let M̄ = E[M(ω)] and

q̄ = E[q(ω)] be mathematical expectations of M(ω) and q(ω), respectively. The EV model is

to find an x ∈ ℜn such that

x ≥ 0, ȳ = M̄x+ q̄ ≥ 0, xT ȳ = 0. (1.2)

Another is the expected residual minimization (ERM) model (see [1,7]). The ERM model is to

find an x ∈ ℜn
+ that minimizes the expected total residual function

min
x≥0

f(x) = E
[

‖Φ̃(x, ω)‖2
]

=

n
∑

i=1

E
{

[ϕ(xi,Mi(ω)x+ qi(ω))]
2
}

, (1.3)
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where Mi(ω) (i = 1, · · · , n) is the i-th row of random matrix M(ω) and ϕ : ℜ2 → ℜ is an

NCP-function that satisfies

ϕ(a, b) = 0 ⇐⇒ a ≥ 0, b ≥ 0, ab = 0

and

Φ̃(x, ω) =







ϕ(x1,M1(ω)x+ q1(ω))
...

ϕ(xn,Mn(ω)x+ qn(ω))






.

Recently, Zhou and Caccetta (see [16]) present a new model for a class of stochastic linear

complementarity problems in which sample space Ω has only finitely many elements. Let

Ω = {ω1, ω2, · · · , ωm} and their model is to find an x ∈ ℜn such that

x ≥ 0, M(ωi)x+ q(ωi) ≥ 0, xT
[

M(ωi)x+ q(ωi)
]

= 0, i = 1, · · · ,m, m > 1. (1.4)

In their model it is assumed that pi = P{ωi ∈ Ω} > 0, i = 1, · · · ,m, and let M̄ and q̄ be the

expectation values of the random matrix M(ω) and random vector q(ω), i.e.,

M̄ =
m
∑

i=1

piM(ωi), q̄ =
m
∑

i=1

piq(ωi). (1.5)

They claim that problem (1.4) is equivalent to (1.6)-(1.7):

x ≥ 0, M̄x+ q̄ ≥ 0, xT (M̄x+ q̄) = 0, (1.6)

M(ωi)x + q(ωi) ≥ 0, i = 1, · · · ,m. (1.7)

Furthermore, they define

Φα(x) =







ϕα(x1, (M̄x+ q̄)1)
...

ϕα(xn, (M̄x+ q̄)n)






,

where, ϕα(a, b) = a+ b−
√
a2 + b2+α[a]+[b]+ with α > 0 and [t]+ = max{0, t}. Then problem

(1.4), if it has a solution, can be reformulated as the following minimization problem with

nonnegative constraints

min θ(z) =
1

2
‖H̃(z)‖2,

s.t. z ≥ 0,
(1.8)

where z = (x, y) ∈ ℜn ×ℜmn and

H̃(z) := H̃(x, y) =

(

Φα(x)

M̃(ω)x+ q̃(ω)− y

)

.

Here

M̃(ω) =







M(ω1)
...

M(ωm)






∈ ℜmn×n, q̃(ω) =







q(ω1)
...

q(ωm)






∈ ℜmn.

The authors of [16] propose a semismooth Newton method for solving the constrained mini-

mization problem (1.8). They also examined the effectiveness of the algorithm by means of

numerical experiments.


