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Abstract

We describe the application of the spectral method to delay integro-differential equa-

tions with proportional delays. It is shown that the resulting numerical solutions exhibit

the spectral convergence order. Extensions to equations with more general (nonlinear)

vanishing delays are also discussed.
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1. Introduction

We consider the delay integro-differential equation of the form

y′(t) =a(t)y(t) + b(t)y(qt) +

∫ t

0

K0(t− s)y(s)ds

+

∫ qt

0

K1(t− s)y(s)ds+ g(t), t ∈ I := [0, T ], (1.1a)

y(0) =y0, (1.1b)

where 0 < q < 1, a(t) and b(t) are smooth functions on I := [0, T ] and K0, K1 ∈ C(I).

The special case corresponding to K0(t, s) ≡ 0, K1(t, s) ≡ 0, g(t) = 0, yields the (variable

coefficient) pantograph equation. Results on the existence, uniqueness and regularity of solutions

may be found in [3-6].

It has been shown in [6] that the approximation of the solution of (1.1) by collocation

using piecewise polynomials of degree m ≥ 1 and uniform meshes does not lead to the classical

O(h2m)- superconvergence at the mesh points when collocation is at the Gauss points; for

m ≥ 2 the optimal order is only m + 2. Thus, it is of interest to investigate if the numerical

solution of (1.1) by spectral methods leads to a higher (exponential) convergence order.

It will be shown that the results on the exponential order of convergence of the spectral

method for the pantograph DDE [7] and for Volterra type integral equations [11, 12] remain

valid for pantograph-type integro-differential equation (1.1).

In Section 2 we describe the spectral method for the integro-delay differential equation. This

is followed, in Section 3, by corresponding results on the attainable order of convergence of these

spectral methods and by remarks (Section 4) on their extension to equations with nonlinear

vanishing delays. Section 5 is used to illustrate the convergence results by numerical examples.
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2. Spectral Method

Let {tk}Nk=0 be the set of the (N + 1) Gauss-Legendre, or Gauss-Radau, or Gauss-Lobatto

points in [−1, 1] and denote by PN the space of real polynomials of degree not exceeding N .

Integrating (1.1a) from [0, ti] gives

y(ti) =y0 +

∫ ti

0

a(s)y(s)ds+

∫ ti

0

b(s)y(qs)ds+

∫ ti

0

(∫ s

0

K0(s− v)y(v)dv

)

ds

+

∫ ti

0

(∫ qs

0

K1(s− v)y(v)dv

)

ds+

∫ ti

0

g(s)ds. (2.1)

We will describe and analyzed spectral methods on the standard interval [−1, 1]. Hence using

for ti (i = 1, · · · , N) the linear transformation s = ti
2 θ +

ti
2 , we get

y(ti) =y0 +
ti
2

∫ 1

−1

a

(

ti
2
(θ + 1)

)

y

(

ti
2
(θ + 1)

)

dθ +
ti
2

∫ 1

−1

b

(

ti
2
(θ + 1)

)

y

(

qti
2
(θ + 1)

)

dθ

+
ti
2

∫ 1

−1

(

∫

ti
2 (θ+1)

0

K0

( ti
2
(θ + 1)− v

)

y(v)dv

)

dθ

+
ti
2

∫ 1

−1

(

∫

qti
2 (θ+1)

0

K1

( ti
2
(θ + 1)− v

)

y(v)dv

)

dθ +G(ti), (2.2)

where

G(ti) :=

∫ ti

0

g(s)ds.

Using the (N+1)-point Gauss-Legendre, or Gauss-Radau, or Gauss-Lobatto quadrature formula

relative to the Legendre weight leads to the semi-discretised spectral equations

y(ti) ≈y0 +
ti
2

N
∑

k=0

a(τik)y(τik)ωk +
ti
2

N
∑

k=0

b(τik)y(qτik)ωk

+
ti
2

N
∑

k=0

(∫ τik

0

K0(τik − v)y(v)dv

)

ωk

+
ti
2

N
∑

k=0

(∫ qτik

0

K1(τik − v)y(v)dv

)

ωk +G(ti), (2.3)

which we rewrite in the form

y(ti) ≈y0 +
ti
2

N
∑

k=0

a(τik)y(τik)ωk +
ti
2

N
∑

k=0

b(τik)y(qτik)ωk

+
ti
2

N
∑

k=0

(

τik
2

∫ 1

−1

K0

(

τik − τik
2
(θ + 1)

)

y
(τik

2
(θ + 1)

)

dθ

)

ωk

+
ti
2

N
∑

k=0

(

qτik
2

∫ 1

−1

K1

(

τik − qτik
2

(θ + 1)
)

y
(qτik

2
(θ + 1)

)

dθ

)

ωk +G(ti), (2.4)

where τik := ti
2 (θk + 1) and i = 0, · · · , N.


