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Abstract

In this note, we apply the h-adaptive streamline diffusion finite element method with a

small mesh-dependent artificial viscosity to solve nonlinear hyperbolic partial differential

equations, with the objective of achieving high order accuracy and mesh efficiency. We

compute the numerical solution to a steady state Burgers equation and the solution to a

converging-diverging nozzle problem. The computational results verify that, by suitably

choosing the artificial viscosity coefficient and applying the adaptive strategy based on a

posterior error estimate by Johnson et al., an order of N−3/2 accuracy can be obtained

when continuous piecewise linear elements are used, where N is the number of elements.
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1. Introduction

For the nonlinear hyperbolic equations

ut + f(u)x = 0 (1.1)

discontinuities may develop after finite time despite the regularity of the initial condition. This

accounts for most of the difficulties in the design of numerical schemes to solve the nonlinear

hyperbolic equation (1.1) accurately. It has been shown [6, 7] that the numerical solution

generated by high order methods produces in general only first order accuracy for pointwise

errors, because the information carried along characteristics is degraded to first order when

passing through the discontinuity. Much work has been done in the literature to achieve high

order accuracy in the presence of discontinuities. To name a few, pre- and post-processing has

been introduced in [6,7] to recover high order pointwise accuracy for linear hyperbolic systems;

Glimm and his co-authors [2] have designed high order front tracking algorithms; Gottlieb et

al. [3] applied the Gegenbauer postprocessing to recover the designed accuracy up to the shock

front in the framework of high order weighted essentially non-oscillatory (WENO) schemes. In
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this note, we study an h-adaptive finite element method for solving (1.1) with a mesh dependent

artificial viscosity

ut + f(u)x = εuxx, (1.2)

where ε is suitably chosen together with an h-adaptivity strategy to enhance accuracy. An

advantage of this approach is that the solution is regularized by an artificial viscosity and the

entropy condition should be satisfied within this framework. However, one main question in

this approach is whether we can solve (1.2) accurately and efficiently with a sharp viscous shock

layer existing in the solution when ε diminishes with the mesh size. Or equivalently, can we

resolve the sharp layer while keeping the overall error small. These questions will be addressed

by using an adaptive mechanism to adjust grid distribution automatically with mesh refinement

in regions where small scale features (such as shock layers and vortex sheets) exist.

Adaptive finite element methods have been extensively studied and applied for solving linear

parabolic partial differential equations [1,4], and also explored for nonlinear hyperbolic conser-

vation laws [5]. This approach is efficient for solving problems whose solutions contain multiple

features. One important class of adaptive strategies is based on the measurement of the residual

with certain norm. The underlying mesh is adjusted locally to obtain an even distribution of

the a posterior error or a reduction of the overall error.

The computation in this note is based on the a posterior error estimation of Johnson and

Szepessy [5]. In their work, they provided the a posterior error estimates for ε = CN−1, where

N is the total number of elements, in the following form

||e|| ≤ CsCi
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∥

∥

∥

h2

ε
R(U)

∥

∥

∥

∥

. (1.3)

Here and below, the unmarked norm is the L2-norm, e = u−U , where u is the exact solution of

(1.1) and U is the finite element numerical solution of (1.2). R(U) = Ut + f(U)x − εUxx is the

residual of the finite element solution U (evaluated appropriately). Cs is the stability constant

and Ci is the interpolation constant, which depends only on the degree of the polynomials and

the shape of the finite elements. It should also be noted that Cs depends on both the analytic

and numerical solutions of the underlying differential equation. Therefore, strictly speaking the

above estimate is not a usual a posterior error estimate which should only depend on U and

h. As commented in [5], Cs is in general a moderate number. Analytic estimation of Cs is

restricted to certain model cases only, where the system is strictly hyperbolic in one dimension

allowing the presence of weak shocks, noninteracting shocks and rarefaction waves. In general,

it is reasonable and realistic to estimate the bound of Cs computationally. We refer to [5] for

the details. It is suggested in [5] that adaption of the grids could be carried out based on this

a posterior error estimate, but it remains unclear what accuracy can be achieved by adapting

the mesh based on this estimation, theoretically or numerically. Our computation in this note

indicates that an order of N−3/2 can be achieved for the two benchmark problems in scalar and

system cases.

2. Numerical Results

The adaptive strategy here is that the mesh is adapted in an iterative way in order to get

equal or close to equal amount of ||h2

ε R(U)|| on each element. A threshold is set to stop the

iteration when the change of the total residue ||h2

ε R(U)|| is stagnant. The test problems here

are the model cases we mentioned above, where the bound of stability constant Cs could be


