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Abstract

In this paper, we consider the time dependent Maxwell’s equations when dispersive

media are involved. The Crank-Nicolson mixed finite element methods are developed for

three most popular dispersive medium models: the isotropic cold plasma, the one-pole

Debye medium and the two-pole Lorentz medium. Optimal error estimates are proved

for all three models solved by the Raviart-Thomas-Nédélec spaces. Extensions to multiple

pole dispersive media are presented also.
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1. Introduction

The dispersive medium is characterized by a frequency-dependent susceptibility or permit-
tivity, so that monochromatic waves of different frequencies travel in the medium at different
velocities and undergo different attenuations. The most common dispersive media include bi-
ological tissue, ionosphere, water, soil, snow, ice, plasma, optical fibers and radar absorbing
materials. Hence the study of wave or pulse propagation in dispersive media is important in
many applications.

Starting early 1990’s, considerable attention has been devoted to numerical modeling of
wave propagation in dispersive media. Approaches such as the recursive convolution method
and auxiliary differential equation method have been developed under the framework of the
finite-difference time-domain (FDTD) method, details and early references can be found in
books [19, Ch.8] and [29, Ch.9]. However, due to its complexity, the time-domain finite element
method (TDFEM) for the dispersive media has not explored until 2001 by Jiao and Jin [18].
Their TDFEM is based on the second-order vector wave equation. Recently, the time-domain
discontinuous Galerkin method has been investigated by Lu et al. [24] by solving the first-order
Maxwell’s equations directly. The one dimensional TDFEM was studied for Debye and Lorentz
dispersive media by Bank et al. [4] recently.

Since 1980’s, there has been a growing interest in finite element analysis of Maxwell’s equa-
tions (e.g. [3, 5–9, 12–15, 17, 23, 27, 28, 32]). However, almost all studies are restricted to the
simple medium case. Very recently, we initiated the error analysis of TDFEM for dispersive

* Received March 16, 2009 / Revised version received September 11, 2009 / Accepted September 15, 2009 /

Published online May 1, 2010 /



694 J.C. LI AND Z.M. ZHANG

media [20–22]. In [22], we discussed the superconvergence results for some semi-discrete schemes
developed for dispersive medium models. While in [20], we analyzed the backward Euler mixed
finite element methods (FEMs) for three most popular dispersive medium models. In [21], we
studied the backward Euler scheme for the vector wave equation resulting from the isotropic
non-magnetized cold plasma model. In all our previous work, the FEMs are all built on the
integro-differential equations. In this paper, we propose some Crank-Nicolson mixed FEMs
directly on the governing equations without introducing integral terms. It turns out that this
algorithm is simpler and the error analysis can be beautifully carried through by skillful ma-
nipulations. Here we provide a unified optimal error analysis for all three popular dispersive
medium models.

We conclude the section with an outline of the remainder of the paper. In next section,
we consider the single pole Debye medium solved by the Crank-Nicolson mixed method using
the lowest Raviart-Thomas-Nédélec (RTN) space. Optimal error estimates are proved under
proper regularity assumptions. Then we extend the results to the multiple pole Debye medium.
In Section 3, we generalize the numerical scheme and error analysis to both the two-pole and
multiple pole Lorentz media. Section 4 is devoted to the isotropic cold plasma model. Similar
numerical scheme and results are presented. Finally, we conclude the paper in Section 5.

In this paper, C (sometimes with sub-index) denotes a generic constant, which is inde-
pendent of the finite element mesh size h and time step size τ. We also use some common
notation

Hα(curl; Ω) =
{

v ∈ (Hα(Ω))3; ∇× v ∈ (Hα(Ω))3
}

,

H0(curl; Ω) =
{

v ∈ H(curl; Ω); n× v = 0 on ∂Ω
}

,

where α ≥ 0 is a real number, and Ω is a bounded and convex Lipschitz polyhedral domain in
R3 with connected boundary ∂Ω and unit outward normal n. When α = 0, we simply denote
H0(curl; Ω) = H(curl; Ω). Let (Hα(Ω))3 be the standard Sobolev space equipped with the norm
‖ · ‖α and semi-norm | · |α. In particular, ‖ · ‖0 will mean the (L2(Ω))3-norm. Also H(curl; Ω)
and Hα(curl; Ω) are equipped with the norm

‖v‖
0,curl =

(
‖v‖20 + ‖curl v‖20

)1/2

,

‖v‖α,curl =
(
‖v‖2α + ‖curl v‖2α

)1/2

.

Finally, we denote Cm(0, T ; X) the space of m times continuously differentiable functions from
[0, T ] into the Hilbert space X.

2. Debye Medium

For the single pole Debye medium model, we have the governing equations [20,30]
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