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Abstract

We present a program for computing symmetric quadrature rules on triangles and

tetrahedra. A set of rules are obtained by using this program. Quadrature rules up to

order 21 on triangles and up to order 14 on tetrahedra have been obtained which are useful

for use in finite element computations. All rules presented here have positive weights with

points lying within the integration domain.
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1. Introduction

In finite element computations, numerical integration is widely used for computing integrals

of functions or bilinear forms. For triangular meshes numerical integrations on line segments,

triangles, and tetrahedra are needed. In contrast to quadrilaterals or hexahedra on which

quadrature formulas can be naturally derived from tensor products of one-dimensional Gauss

quadrature rules, high-order non-tensor product quadrature rules on triangles and tetrahedra

are difficult to construct. In fact, many of the non-tensor product rules published in finite

element textbooks contain either negative weights or points outside of the integration domain,

which are undesirable for numerical computations. As a result, it is a common practice in many

finite element packages to use quadrature rules associated with tensor products of one of the

Gauss-Jacobi rules; these rules are unsymmetric and generally require (as many as twice in

three-dimensions) more function evaluations.

There have been many studies searching for quadrature rules on triangles and tetrahedra,

both numerically and analytically. The problem of finding quadrature rules generally leads to a

problem of finding the zeros or minima of high-order multi-variate polynomials, which is known

to be extremely difficult. Many methods have been developed for computing quadrature rules;

we refer the reader to [1, 2, 3, 4, 5, 6, 7, 8, 9] and the references therein.

In this paper, we present a program for computing symmetric quadrature rules on triangles

and tetrahedra and a set of quadrature rules obtained using this program. The underlying

algorithm turns the problem of computing quadrature rules into nonlinear least square solution

of systems of polynomial equations, and makes use of MINPACK [10] which is a publicly

available well known minimization package. All rules presented here are fully symmetric and

have positive weights with quadrature points lying within the integration domain. We believe

that at least some of the rules presented in this paper are new. We prefer symmetric rules
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on triangles and tetrahedra because they are naturally related to the geometric symmetry of

the integration domain and can be represented in a compact form using symmetry orbits, and

more importantly, the symmetry of the quadrature points may be exploited, together with the

symmetry of finite element basis functions, to reduce the computational cost in the calculation

of mass and stiffness matrices.

After this short introduction, the rest of the paper is organized as follows. In Section 2 we

give a brief description on quadrature rules and define some notations used. In Section 3 we

present our program and the underlying numerical algorithm for computing quadrature rules.

In Section 4 we report the quadrature rules found using this program. In the final section we

give some concluding remarks.

2. Notations

Let T be a d-dimensional simplex, here d = 2 (triangle) or 3 (tetrahedron). A quadrature

rule R on T is defined as a set of point and weight pairs: R = {(pi, wi) | i = 1, · · · , n}, such

that for any function f(x) defined on a domain containing T and the points pi, its integral on

T can be approximated by: ∫
T

f(x)dx ≈ |T |

n∑
i=1

f(pi)wi, (2.1)

where n ∈ N is the number of points, pi are the quadrature points, wi are the associated weights,

|T | denotes the area (d = 2) or volume (d = 3) of T .

A quadrature rule is said to be of (algebraic) order p if (2.1) is exact for all polynomials of

degree not exceeding p. It is clear that if a quadrature rule is of order 0, then the sum of the

weights must be equal to 1.

When dealing with a simplex it is often convenient to use barycentric coordinates. Let vi,

i = 1, · · · , d+1, be the vertices of T . Then the barycentric coordinates (ξ1, · · · , ξd+1) of a point

p with respect to T is determined by:

p =
d+1∑
i=1

ξivi and
d+1∑
i=1

ξi = 1.

Barycentric coordinates are invariant under affine transformations and p ∈ T if and only if all

its barycentric coordinates lie in the interval (0, 1).

A quadrature rule R is said to be symmetric if it is invariant under permutations of the

barycentric coordinates. More precisely, let (ξ1, · · · , ξd+1) be a quadrature point of R associated

with weight w, then for any permutation i1, · · · , id+1 of the indices 1, · · · , d + 1, the point

(ξi1 , · · · , ξid+1
) is also a quadrature point of R associated with the same weight. For a symmetric

quadrature rule, the set of quadrature points can be naturally divided into symmetry orbits,

with each orbit containing all the points generated by permuting the barycentric coordinates of

a single point. The symmetry orbits can be classified into a number of permutation stars, which

are summarized in Tables 2.1 and 2.2, in which the notations for the permutation stars are from

[11] which have the advantage of easily distinguishing stars on triangles and on tetrahedra.

3. The Numerical Algorithm

Denote by P
(p) the set of polynomials of degree less than or equal to p. The problem of

finding an n-point quadrature rule of order p consists of finding the quadrature points pi and


