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Abstract

Projection methods are efficient operator-splitting schemes to approximate solutions of

the incompressible Navier-Stokes equations. As a major drawback, they introduce spurious

layers, both in space and time. In this work, we survey convergence results for higher order

projection methods, in the presence of only strong solutions of the limiting problem; in

particular, we highlight concomitant difficulties in the construction process of accurate

higher order schemes, such as limited regularities of the limiting solution, and a lack of

accurate initial data for the pressure. Computational experiments are included to compare

the presented schemes, and illustrate the difficulties mentioned.
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1. Introduction

Let Ω ⊂ R
d, for d = 2, 3 be a bounded Lipschitz domain, and T > 0; we consider the

time-dependent Navier-Stokes equations for incompressible, viscous (ν > 0) Newtonian fluids,

ut − ν∆u + (u · ∇)u + ∇p = f in ΩT := (0, T ) × Ω, (1.1)

div u = 0 in ΩT , (1.2)

u = 0 on ∂ΩT := (0, T )× ∂Ω, (1.3)

u(0, ·) = u0 in Ω. (1.4)

Here, u : ΩT → R
d denotes the velocity field, p : ΩT → R the scalar pressure of vanishing mean

value, i.e.,
∫

Ω
p(·,x) dx = 0, and a given force f : ΩT → R

d is driving the fluid flow, with initial

velocity field u0 : Ω → R
d.

In the following, we approximate strong solutions u ∈ W 1,2
(

0, T ;J0(Ω)
)

∩ L2
(

0, T ;J1(Ω) ∩
W2,2(Ω)

)

of (1.1)-(1.4), whose existence for data

u0 ∈ J1(Ω), f ∈ L2
(

0, T ;J0(Ω)
)

is well-known to be (at least) local (d = 3) resp. global (d = 2). Here and below, we adopt the

standard notation of Sobolev and Bochner spaces, and use the notation

J0(Ω) =
{

v ∈ L2(Ω) : div v = 0 weakly in Ω, 〈v,n〉 = 0 on ∂Ω
}

,

J1(Ω) =
{

v ∈ W1,2
0 (Ω) : div v = 0 weakly in Ω

}

,
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where 〈·, ·〉 denotes the standard scalar product in R
d, and n(x) ∈ S

d−1 is the unit vector field

pointing outside Ω.

Recall that solutions of (1.1)-(1.4) suffer a breakdown of regularity for t → 0, even in the

case of smooth (initial) data. Global regularity would require data u0 and f to satisfy a nonlocal

compatibility condition which is virtually uncheckable in actual cases: it is proved in [5] that

global regularity may only be valid if there exists a solution p0 ∈ W 1,2(Ω) ∩ L2
0(Ω) of the

overdetermined Neumann problem

∆p0 = div
(

f(0, ·) − (u0 · ∇)u0

)

in Ω,

∇p0 = ν∆u0 + f(0, ·) − (u0 · ∇)u0 on ∂Ω.

In order to justify existence of (local) strong solutions, we always suppose that the data in

(1.1)-(1.4) satisfy

(A1) (regularity of domain) The unique solution w ∈ J1(Ω) of the stationary, incompressible

Stokes problem

−ν∆w + ∇π = g in Ω ⊂ R
d

is already in J1(Ω) ∩W2,2(Ω), provided g ∈ L2(Ω), and satisfies

‖w‖W2,2 ≤ C ‖g‖L2 .

(A2) (regularity of data) For any T > 0, let

u0 ∈ J1(Ω) ∩ W2,2(Ω),

f ∈ W 2,∞
(

0, T ;L2(Ω)
)

.

A second-order temporal discretization of (1.1)-(1.4) uses the Crank-Nicholson method; in [6],

it has been shown that iterates {
(

um, pm
)

}m>0 satisfy

max
1≤m≤M

τm

[

‖u(tm, ·) − um‖L2 +
√

τmk ‖p(tm, ·) − pm−1/2‖L2

]

≤ Ck2, (1.5)

where

τm := min{1, tm}, pm−1/2 =
1

2

{

pm + pm−1
}

.

The practical disadvantage of implicit discretization strategies of (1.1)-(1.4) is the significant

computational effort implied from the necessity to solve coupled nonlinear algebraic problems to

determine (Galerkin approximations of) (um, pm ) at every time-step given by 1 ≤ m ≤ M . As

a consequence, splitting algorithms were developed to reduce complexity of actual computations;

among them, and one of the first, is Chorin’s projection method [1, 2, 13], where iterates for

velocity field and pressure are independently obtained at every time-step. However, it is known

that the quality of pressure iterates is deteriorated by unphysical boundary layers [3, 10]. One

strategy to improve their quality is to either construct (formally) first-order schemes which are

exempted from this deficiency (i.e., the Chorin-Uzawa scheme [7, Section 8], or Chorin-Penalty

scheme [9]), whereas another one would be to construct higher order projection schemes, where

possible boundary layers are less pronounced (i.e., the Van Kan scheme [14]). The Van Kan


