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Abstract

In this paper, we obtain optimal error estimates in both L2-norm and H(curl)-norm for

the Nédélec edge finite element approximation of the time-harmonic Maxwell’s equations

on a general Lipschitz domain discretized on quasi-uniform meshes. One key to our proof

is to transform the L2 error estimates into the L2 estimate of a discrete divergence-free

function which belongs to the edge finite element spaces, and then use the approximation

of the discrete divergence-free function by the continuous divergence-free function and a

duality argument for the continuous divergence-free function. For Nédélec’s second type

elements, we present an optimal convergence estimate which improves the best results

available in the literature.
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1. Introduction

Convergence analysis for edge element discretizations of the time-harmonic Maxwell’s equa-
tions have been much studied in the literatures, see [4, 5, 7, 10, 12, 13]. Monk [12] first proved
error estimates in both L2-norm and H(curl)-norm under the assumption that Ω is convex,
but both the exponent and the constant of convergence rate in L2 error estimate involve an
arbitrarily small constant ε > 0. Afterward, Hiptmair [10] and Monk [13] obtained asymptotic
quasi-optimality of error estimates in H(curl)-norm for a general Lipschitz polyhedron. Re-
cently, Buffa [5] presented an abstract convergence theory for a class of noncoercive problems
and then applied it to this model.

In this paper, we obtain optimal error estimates in both L2-norm and H(curl)-norm for
the Nédélec edge finite element approximation of the time-harmonic Maxwell’s equations on a
general Lipschitz domain and quasi-uniform meshes. First of all, we use the discrete Helmholtz
decomposition for the difference between the Nédélec finite element solution and a finite element
function, then obtain the discrete divergence-free function wh which belongs to the edge finite
element spaces. Secondly, we transform error estimate in both L2-norm and H(curl)-seminorm
into the L2 estimate of wh by proving that the error function is discrete divergence-free. Thirdly,
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we obtain the L2 estimates of wh by using its special approximation w which is a continuous
divergence-free function and a duality argument for w. Finally, we obtain optimal error esti-
mates in both L2-norm and H(curl)-norm. Compare with the results in [12], the exponent
and the constant of convergence rate in our error estimates are independent of the constant ε,
thereby we improve the L2 error estimate in [12].

Combining optimal L2 error estimates with the corresponding interpolation error estimates
for Nédélec’s second type elements, we obtain the convergence order of the error function, and
the order only depends on the Lipschitz domain and the smoothness of the solution. Especially,
for the convex domain, we obtain an optimal convergence order. It should be noted that the L2

error estimates are one order higher than the H(curl)-norm estimates for Nédélec’s second type
elements, however, it is not correct for Nédélec’s first type elements, because when restricted to
the elements of the triangulation they fails to provide a complete space of polynomial ( see [12]).

To avoid the repeated use of generic but unspecified constants, following [18], we use the
notation a . b means that there exists a positive constant C such that a ≤ Cb, the above
generic constants C are independent of the function under consideration, but they may depend
on Ω and the shape-regularity of the meshes.

The rest of the paper is organized as follows. In Section 2, we introduce the time-harmonic
Maxwell’s equations, then present its corresponding equivalent variational problem and the well-
posedness. In Section 3, we present the discrete variational problem and some preliminaries. In
Section 4, we obtain optimal error estimates in both L2-norm and H(curl)-norm, and present
an optimal convergence order for Nédélec’s second type elements.

2. Formulation of the Problem

For simplicity, we assume that Ω is a bounded Lipschitz polyhedron in R3 with connected
boundary Γ and unit outward normal ν. For any m ≥ 1 and p ≥ 1, we denote the standard
Sobolev space by Wm,p(Ω). Especially, when p = 2, we denote the space by Hm(Ω) = Wm,2(Ω),
and H1

0 (Ω) = {u ∈ H1(Ω) : u|Γ = 0}. Furthermore, we also need some other Sobolev functional
spaces ( see [9, 14]):

H0(curl; Ω) =
{
u ∈ (L2(Ω))3

∣∣ ∇× u ∈ (L2(Ω))3, ν × u = 0 on Γ
}

,

Hs(curl; Ω) =
{
u ∈ (Hs(Ω))3 | ∇ × u ∈ (Hs(Ω))3

}
,

where s > 0, and the above spaces are equipped with the norms, respectively,

‖v‖H(curl;Ω) =
(‖v‖20 + ‖∇ × v‖20

)1/2 ∀ u ∈ H0(curl; Ω),

‖v‖Hs(curl;Ω) =
(
‖v‖2Hs(Ω) + ‖∇ × v‖2Hs(Ω)

)1/2

∀ v ∈ Hs(curl; Ω).

Here, ‖ · ‖0 denotes the norm in (L2(Ω))3.
We consider the following classical time-harmonic Maxwell’s equations (c.f. [10, 12,14])

∇× (µ−1∇×E)− ω2ηE = F in Ω, (2.1)

ν ×E = 0 on Γ, (2.2)

where µ is called the magnetic permeability, ω > 0 is called the angular frequency, η = ε+iσ/ω,
where i =

√−1, ε and σ are called, respectively, the electric permittivity, and conductivity of
the homogeneous isotropic body occupying Ω, F = iωJ with the applied current density J .


