A NEW ALGORITHM FOR COMPUTING THE INVERSE AND GENERALIZED INVERSE OF THE SCALED FACTOR CIRCULANT MATRIX*

Zhaolin Jiang
School of Science, Xi'an Jiaotong University, Xi'an 710049, China, and Department of Mathematics, Linyi Teachers College, Linyi 276005, China
Email: jzh1208@sina.com
Zongben Xu
School of Science, Xi'an Jiaotong University, Xi'an 710049, China
Email: zbxu@mail.xjtu.edu.cn

Abstract

A new algorithm for finding the inverse of a nonsingular scaled factor circulant matrix is presented by the Euclid's algorithm. Extension is made to compute the group inverse and the Moore-Penrose inverse of the singular scaled factor circulant matrix. Numerical examples are presented to demonstrate the implementation of the proposed algorithm. Mathematics subject classification: 15A21, 65F15. Key words: Scaled factor circulant matrix, Inverse, Group inverse, Moore-Penrose inverse.

1. Introduction

Circulant matrices, as an important class of special matrices, have a wide range of interesting applications [12-19]. They have in recent years been applied in many areas, see, e.g., $[2,3,6$, $10,11,15,17]$. Scaled circulant permutation matrices and the matrices that commute with them are natural extensions of this well-studied class, see, e.g., [1, 20-23]. In particular, it will be seen that r-circulant matrices $[10,11]$ are precisely those matrices commuting with the scaled circulant permutation matrix.

This paper presents an efficient algorithm to compute the inverse of a nonsingular scaled factor circulant matrix or to compute the group inverse and Moore-Penrose inverse of the circulant matrix when it is singular. The algorithm has small computational complexity. It is a notable character of the algorithm that the singularity of the scaled factor circulant matrix need not be priori known.

We define \mathcal{R} as the scaled circulant permutation matrix, that is,

$$
\mathcal{R}=\left(\begin{array}{cccccc}
0 & d_{1} & 0 & \ldots & 0 & 0 \tag{1.1}\\
0 & 0 & d_{2} & \cdots & 0 & 0 \\
\cdots & \cdots & \cdots & \cdots & \cdots & \\
0 & 0 & 0 & \cdots & 0 & d_{n-1} \\
d_{n} & 0 & 0 & \cdots & 0 & 0
\end{array}\right)_{n \times n} .
$$

This paper deals with the case where \mathcal{R} is nonsingular ($d_{i} \neq 0$ and fixed).
It is easily verified that the polynomial $g(x)=x^{n}-d_{1} d_{2} \ldots d_{n}$ is both the minimal polynomial and the characteristic polynomial of the matrix \mathcal{R}. In addition, \mathcal{R} is nondergatory.

[^0]Moreover, \mathcal{R} is normal if and only if $\left|d_{1}\right|=\left|d_{2}\right|=\cdots=\left|d_{n}\right|$, where $\left|d_{i}\right|, i=1, \cdots, n$ denote the modulus of the complex number $d_{i}, i=1, \cdots, n$.

Definition 1.1. An $n \times n$ matrix A over \mathbb{C} is called a scaled factor circulant matrix if A commutes with \mathcal{R}, that is,

$$
\begin{equation*}
A \mathcal{R}=\mathcal{R} A \tag{1.2}
\end{equation*}
$$

where \mathcal{R} is given in (1.1).
Let $\mathcal{R S F C M} M_{n}$ be the set of all complex $n \times n$ matrices which commute with \mathcal{R}. In the following, with $A=\operatorname{scacirc}_{\mathcal{R}}\left(a_{0}, a_{1}, \cdots, a_{n-1}\right)$ we denote the scaled factor circulant matrix A whose first row is $\left(a_{0}, a_{1}, \ldots, a_{n-1}\right)$. Remark that the first row of A completely defines the matrix. Indeed, since \mathcal{R} is nonderogatory, Eq. (1.2) is fulfilled if and only if $A=f(\mathcal{R})$ for some polynomial f. Furthermore, $\mathcal{R} S F C M_{n}$ is a vector space of dimension n, and there is a clear one-to-one correspondence between the polynomials of degree at most $n-1$ and the numbers a_{0}, \cdots, a_{n-1}.

For an $m \times n$ matrix A, any solution to the matrix equation $A X A=A$ is called a generalized inverse of A. In addition, if X satisfies $X=X A X$, then A and X are said to be semi-inverses, see, e.g., [2].

In this paper we only consider square matrices A. In $[8, \mathrm{p} .51]$ the smallest positive integer k for which $\operatorname{rank}\left(A^{k+1}\right)=\operatorname{rank}\left(A^{k}\right)$ holds is called the index of A. If A has index 1 , the generalized inverse X of A is called the group inverse $A^{\#}$ of A. Clearly, A and X are group inverses if and only if they are semi-inverses and $A X=X A$.

In [4, 5] a semi-inverse X of A was considered in which the nonzero eigenvalues of X are the reciprocals of the nonzero eigenvalue of A. These matrices were called spectral inverses. It was shown in [5] that a nonzero matrix A has a unique spectral inverse, A^{s}, if and only if A has index 1: when A^{s} is the group inverse $A^{\#}$ of A.

2. The Properties of the Scaled Factor Circulant Matrix

Lemma 2.1. ([1]) If \mathcal{R} is a scaled circulant permutation matrix, and if k is a positive integer, then $\mathcal{R}^{k}=D^{(k)} C^{k}$, where $D^{(k)}$ is the diagonal matrix whose (j, j) entry is $\prod_{t=j}^{j+k-1} d_{t}$ for $1 \leq j \leq n$ and $C=\operatorname{circ}(0,1,0, \cdots, 0)$ is the circulant permutation. Furthermore,

$$
\mathcal{R}^{n}=\left(\prod_{j=1}^{n} d_{j}\right) I_{n}, \quad \operatorname{det} \mathcal{R}=(-1)^{n-1} \prod_{j=1}^{n} d_{j}
$$

Let $\omega=\exp \left(\frac{2 \pi i}{n}\right)$ be a primitive nth root of unity. Then $\omega_{j}=d \omega^{j}, j=0,1, \cdots, n-1$ are the distinct roots of $g(x)$, where $g(x)=x^{n}-d_{1} d_{2} \cdots d_{n}$, and

$$
\begin{equation*}
d=\left(\prod_{t=1}^{n} d_{t}\right)^{\frac{1}{n}} \neq 0 \tag{2.1}
\end{equation*}
$$

Let F be the $n \times n$ unitary Fourier matrix such that

$$
\begin{equation*}
F_{i j}=\frac{1}{\sqrt{n}} \omega^{(i-1)(j-1)} \quad \text { for } 1 \leq i, j \leq n \tag{2.2}
\end{equation*}
$$

Let

$$
\begin{equation*}
\Delta=\operatorname{diag}\left(\delta_{1}, \delta_{2}, \cdots, \delta_{n}\right) \tag{2.3}
\end{equation*}
$$

[^0]: ${ }^{*}$ Received August 10, 2006 / Revised version received April 23, 2007 / Accepted May 15, 2007 /

