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Abstract

Consider an inverse scattering problem by an obstacle D ⊂ R2 with impedance bound-

ary. We investigate the reconstruction of the scattered field us from its far field pattern

u∞ using the point source method. First, by applying the boundary integral equation

method, we provide a new approach to the point-source method of Potthast by classical

potential theory. This extends the range of the point source method from plane waves to

scattering of arbitrary waves. Second, by analyzing the behavior of the Hankel function,

we obtain an improved strategy for the choice of the regularizing parameter from which an

improved convergence rate (compared to the result of [15]) is achieved for the reconstruc-

tion of the scattered wave. Third, numerical implementations are given to test the validity

and stability of the inversion method for the impedance obstacle.
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1. Introduction

Let D ⊂ R2 be a domain with smooth boundary ∂D ∈ C2 such that the exterior R2 \D is
connected. If we consider D as a 2-D impenetrable obstacle with impedance boundary, then,
for a given incident wave ui(x) such as an incident plane wave eikx·d with incident direction
d ∈ Ω = {ξ ∈ R2, |ξ| = 1} and wave number k > 0, the total wave field

u(x) = ui(x) + us(x) (1.1)

with the scattered wave field us(x) outside D is governed by ([1], Ch.3)



∆u + k2u = 0, x ∈ R2 \D,
∂u(x)
∂ν(x) + ikσ(x)u(x) = 0, x ∈ ∂D,
∂us(x)

∂r − ikus(x) = O( 1√
r
), r = |x| → ∞.

(1.2)
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Here, ν(x) is the outward normal direction on ∂D, and 0 ≤ σ(x) ∈ C(∂D) is the boundary
impedance for D.

For the scattering problem (1.1), it is well known that the scattered wave field us(x) has
the asymptotic expression([5, 6])

us(x) =
eik|x|
√
|x|

[
u∞(x̂) + O

(
1√
|x|

)]
, |x| → ∞, x̂ =

x

|x| ∈ Ω, (1.3)

where u∞(x̂) is called the far-field pattern of the scattered wave field. Both direct and inverse
scattering problems have a long history. The direct problem is to determine the scattered wave
as well as its far-field pattern for a known scatterer and incident wave, while the inverse problem
is to recover a scatterer D from given information about us(x). The typical inverse scattering
problem is to determine ∂D from the far-field pattern u∞ of us(x). For the scattering described
by (1.1) and (1.2), some related results may be found in ([1, 3, 6, 15]) and the references therein.

The relation between the scattered wave us(x) and its far-field pattern u∞(x̂) is also of great
importance, for both direct and inverse scattering problems. On one hand, the far-field pattern
u∞(x̂) for x̂ ∈ Ω can determine the scattered wave uniquely as stated by the well-known Rellich
lemma ([4]), which means that we can determine us(·) in R2 \D from the knowledge of u∞(·)
given in Ω. On the other hand, the determination of us(x) from u∞(x̂) is ill-posed, that is,
the mapping from u∞ to us is unbounded ([15]), which implies that a small perturbation in
the far-field data can cause a large error in the scattered wave. Therefore some regularization
technique should be introduced, such that we can use the noisy data of u∞ to determine us

approximately and stably.
The recovery of us from u∞ has been studied theoretically and numerically for a long time.

One method is to express us(x) as an infinite series

us(x) =
∞∑

n=0

∑

p∈{±1}
ap

nH(1)
n (k|x|)ei(pnϕ) (1.4)

(where H
(1)
n denotes the Hankel function of the first kind of order n and ϕ is the angle between

x̂ and (1, 0)T ) with the coefficients determined by u∞(x̂, d) ([1], Theorem 3.6, Corollary 3.8). A
second method is to establish a relation between us(x) and u∞(x̂, d) by introducing a density
function ([5, 7]). The former method, which expresses the solution us(x) explicitly by a recursive
relation, is used by engineers widely. However, this method is very sensitive to the noisy far-
field pattern data. Also, it has strict geometric limitations, since the recovery of us is restricted
to the exterior of a circle enclosing the scattering object. The potential method of Kirsch and
Kress calculates us(x) from u∞(x̂, d) by solving the integral equation∫

Γ

Φ∞(x̂, y)ϕ(y)ds(y) = u∞(x̂), x̂ ∈ Ω, (1.5)

with some auxillary curve Γ ⊂ D, where Φ(x, y) = i
4H

(1)
0 (k|x− y|) is the fundamental solution

to 2-D Helmholtz equation and Φ∞(·, y) denotes the far field pattern of Φ(·, y). Please note
that in contrast to this notation Φ∞ is often used for the far field pattern of the scattered field
Φs(·, y) for scattering of Φ(·, y) by some scatterer D. With a solution of (1.5), the scattered
field is found by evaluating the potential

us(x) =
∫

Γ

Φ(x, y)ϕ(y)ds(y), x ∈ R2 \D. (1.6)

In a series of papers [11]–[14], a point source method has been proposed to obtain us(x)
from u∞(x̂, d). The main idea of this method as presented in [15] is to approximate the point


