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Abstract

The fast sweeping method is an efficient iterative method for hyperbolic problems.

It combines Gauss-Seidel iterations with alternating sweeping orderings. In this paper

several parallel implementations of the fast sweeping method are presented. These parallel

algorithms are simple and efficient due to the causality of the underlying partial different

equations. Numerical examples are used to verify our algorithms.
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1. Introduction

The fast sweeping method is an iterative method that combines Gauss-Seidel iteration with

alternating sweeping ordering. It was first introduced in [1] from the stochastic control point

of view and then in [11] from partial differential equation point of view. For Eikonal type

of equations it is fully analyzed and shown in [10] that the number of iteration is finite and

is independent of mesh size. The fast sweeping method has been developed for unstructured

meshes in [4] recently. The method has also been extended to more general Hamilton-Jacobi

equations [2, 3, 5, 7] and high-order methods [9].

The convergence mechanism for fast sweeping method is quite different from the general

framework of iterative methods. For most iterative methods, the convergence is due to some

contraction property of the iteration. The fact that the fast sweeping method can converge in a

finite number of iterations, e.g., for Eikonal equations which is a nonlinear hyperbolic boundary

value problem, is because of the causality of the partial differential equation: information

propagates along characteristics. With a systematic alternating ordering strategy all directions

of characteristics can be divided into a finite number of groups and each group of directions is

covered simultaneously by one of the orderings. Moreover, any characteristic can be covered

by a finite number of orderings [10]. From the discrete point of view, the discretized system of

nonlinear equations can be put into a triangular form if all nodes are ordered in an increasing

order according to their values, i.e., if we interpret the viscosity solution to the Eikonal equation

as the first arrival time for an expanding wave front later arrival time can be determined from

earlier arrival time. A triangular system can be solved one equation by one equation in one

sweep. Of course the problem is we do not know the solution so there is no such ordering a priori.
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That is why systematic alternating orderings are needed to cover all possible causality blindly.

In other words, with an appropriate upwind scheme that captures information propagation

along characteristics correctly, we can characterize all nodes into a few groups. All nodes

in each group have a similar dependence pattern on their neighbors. For example, using the

monotone upwind difference scheme (2.2) on a rectangular grid in two dimensions for an Eikonal

equation, all grid points can be divided into simply connected regions. In each region the value

at a grid point depends on two of its neighbors in the following four ways: (1) left and down

neighbors; (2) left and up neighbors; (3) right and down neighbors; (4) right and up neighbors.

Of course there are possible degenerate cases where a grid point may only depend on one of

its neighbors. In a degenerate case we can still classify it into one of the four cases above. For

example, if a grid point only depends on its left neighbor we can either classify it into case (1) or

(2). Using Gauss-Seidel iteration each connected region can be covered by one of the orderings

simultaneously when the ordering is in the upwind direction of the dependence pattern. For

example, the ordering i = 1 : I, j = 1 : J is the upwind direction for the dependence pattern

(1).

Since the fast sweeping method is an iterative method, a natural question is: can the fast

sweeping method be parallelized? The answer is yes and simple. This is again due to the

causality of the partial differential equation. We will present a few possible versions of parallel

implementations of the fast sweeping method in Section 2 and show their efficiencies in Section

3 using numerical examples. Note that a parallel algorithm based on fast marching method

(expanding front) was proposed in [8]. Although the above algorithm can achieve the optimal

complexity O(n/p), where n is the total number of grid points and p is the number of processors,

the algorithm works for a special discretization scheme. In addition a load balancing algorithm

is needed at each stage. Our domain decomposition based parallel algorithms is very simple to

implement and work for more general discretizations.

2. Parallel Algorithms For the Fast Sweeping Method

For simplicity we restrict our discussions to the computation for Eikonal equation in two

dimensions on rectangular grids. Extensions to unstructured meshes and higher dimensions is

straightforward. Assume we want to compute the positive viscosity solution of the following

boundary value problem

|∇u(x)| = f(x) x ∈ R2,

u(x) = 0 x ∈ Γ ⊂ R2,
(2.1)

where f(x) > 0. Denote xi,j to be a grid point in the computational domain Ω, h to be the

grid size and uh
i,j to be the numerical solution at xi,j . First we give a brief description of the

fast sweeping algorithm [10].

Discretization: At interior grid points Godunov type of upwind scheme is used to discretize

the partial differential equation (2.1) which results in the following system of nonlinear

equations
[(uh

i,j − uh
xmin)+]2 + [(uh

i,j − uh
ymin)+]2 = f2

i,jh
2

i = 2, · · · , I − 1, j = 2, · · · , J − 1,

(2.2)

where

uh
xmin = min(uh

i−1,j , uh
i+1,j), uh

ymin = min(uh
i,j−1, u

h
i,j+1)


