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Abstract

Based on the generalized minimal residual (GMRES) principle, Hu and Reichel pro-

posed a minimal residual algorithm for the Sylvester equation. The algorithm requires the

solution of a structured least squares problem. They form the normal equations of the least

squares problem and then solve it by a direct solver, so it is susceptible to instability. In

this paper, by exploiting the special structure of the least squares problem and working on

the problem directly, a numerically stable QR decomposition based algorithm is presented

for the problem. The new algorithm is more stable than the normal equations algorithm

of Hu and Reichel. Numerical experiments are reported to confirm the superior stability

of the new algorithm.
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1. Introduction

Consider the numerical solution of the Sylvester equation

AX − XB = C, (1.1)

where A ∈ Rn1×n1 , B ∈ Rn2×n2 and C ∈ Rn1×n2 are given matrices, and X is the solution

matrix. Such kind of problems arise in various settings, and there are many methods for solving

them [1, 2, 3, 4, 9, 10]. For large and sparse problems, based on the GMRES algorithm [8]

for large unsymmetric linear systems, Hu and Reichel [6] present a minimal residual Krylov

subspace method. In this case, a least squares problem of Kronecker product form must be

solved, and a similar problem also sees [7]. In [6] they first form the normal equations system

of the least squares problem and then solve it by a direct solver. Their algorithm is susceptible

to instability and the computed solution may have poor accuracy due to the possibly high

ill-conditioning of the normal equations system. In this paper we propose a new algorithm for

solving the least squares problem. It is based on stable QR decompositions and fully exploit

the special structure of the problem. Thus, it is more stable than a normal equations based

solver. We also compare the cost of our algorithm with that of Hu and Reichel, showing that

ours is a little bit more expensive than theirs but both are negligible, compared to the overall

cost of the minimal residual method. This indicates that our improvement is significant.

In Section 2 we review the least squares problem to be solved in the minimal residual

method. In Section 3 we show how to develop a stable QR decomposition based algorithm
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for the resulting special least squares problem. Meanwhile, we compare the costs of our new

algorithm and theirs. In Section 4 we report some numerical examples to show the stability

and higher accuracy of our algorithm.

Some notations to be used in the paper are introduced. Denote by the superscript T the

transpose of a vector or a matrix, by A+ the generalized inverse of A, by ‖ · ‖2 the spectral

norm, by κ2(A) = ‖A‖2‖A+‖2 the condition number of A, by Rm the set of m-dimensional

vectors, by Rm×n the set of m×n matrices. Throughout the paper, I is an identity with order

clear in the context, ei is the ith row of I, and Ĩ is the same as the identity matrix I with an

additional zero row.

2. The Least Squares Problem

The minimal residual method [6] given by Hu and Reichel replaces the subspace Km(I ⊗
A − BT ⊗ I, r0) by another subspace of the form Km(BT , g) ⊗ Km(A, f) for certain vectors

f, g ∈ Rn. It is seen from Algorithm 5.2 of [6] that the construction of f, g needs O(n1n2)

flops. We should point out that usually the two subspaces are different. Hu and Reichel then

use the Arnoldi process to generate the Hessenberg matrices H̃A, H̃B and the orthonormal

bases Wm and Vm of Km(BT , g) and Km(A, f), respectively. The process uses 2n1m
2 flops +

m matrix A by vector products and 2n2m
2 flops + m matrix BT by vector products. Then

one solves a least squares problem of the form

min
ym∈Rm

2

‖r̃0 − (Ĩ ⊗ H̃A − H̃B ⊗ Ĩ)ym‖2, (2.1)

where Ĩ is defined as before and H̃A, H̃B are (m + 1) × m Hessenberg matrices. Assume

HA = QARAQT
A, HB = QBRBQT

B

to be the Schur decompositions of HA and HB, where HA and HB are the first m rows of H̃A

and H̃B , and define the unitary matrices

Q̃A =

(

QA

1

)

, Q̃B =

(

QB

1

)

and the matrices

R̃A = Q̃T
AH̃AQA, R̃B = Q̃T

BH̃BQB.

Then the leading m×m principal submatrix of R̃A is RA, and the (m+1)st row of R̃A is given

by

eT
m+1R̃Aej = eT

m+1H̃AemeT
mQAej , 1 ≤ j ≤ m.

A similar result holds for R̃B .

Let r′0 = (Q̃B ⊗ Q̃A)T r̃0 and y′
m = (QB ⊗ QA)T ym. Then (2.1) is equivalent to

min
ym∈Rm

2

‖r′0 − (Im+1,m ⊗ R̃A − R̃B ⊗ Im+1,m)y′
m‖2. (2.2)

The (m + 1)2 × m2 matrix in (2.2) has m2 rows in common with the upper triangular matrix

R = (I ⊗RA −RB ⊗ I). Let the remaining rows define the (2m + 1)×m2 matrix S. Thus, for


