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Abstract

This paper proposes a robust finite element method for a three-dimensional fourth-order

elliptic singular perturbation problem. The method uses the three-dimensional Morley ele-

ment and replaces the finite element functions in the part of bilinear form corresponding to

the second-order differential operator by a suitable approximation. To give such an approx-

imation, a convergent nonconforming element for the second-order problem is constructed.

It is shown that the method converges uniformly in the perturbation parameter.
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1. Introduction

Let Ω be a bounded polyhedral domain of Rn with 1 ≤ n ≤ 3. Denote the boundary of Ω

by ∂Ω. For f ∈ L2(Ω), we consider the following boundary value problem of the fourth-order

elliptic singular perturbation equation:







ε2∆2u− ∆u = f, in Ω,

u|∂Ω =
∂u

∂ν

∣

∣

∣

∂Ω
= 0,

(1.1)

where ν = (ν1, · · · , νn)⊤ is the unit outer normal of ∂Ω, ∆ is the standard Laplacian operator

and ε is a small parameter satisfying 0 < ε ≤ 1. When ε→ 0 the differential equation formally

degenerates to the Poisson equation.

In the two-dimensional case, the Morley element was proposed in [9] for the plate bending

problem. The Morley element is convergent for fourth-order elliptic problems, but is divergent

for second-order problems (see, e.g., [5, 8, 13]). The Morley element and an C0 modified Morley

element for problem (1.1) were discussed in [10]. It was shown that the modified Morley element

is uniformly convergent with respect to ε while the Morley element does not converge when

ε→ 0. Two non-C0 nonconforming elements were proposed in [4] by the double set parameter

technique. These two elements were also proved to be uniformly convergent. A modified Morley

element method for problem (1.1) was proposed in [15]; it is convergent uniformly with respect

to ε. This method also uses the Morley element (or the rectangle Morley element), but the

linear approximation (or the bilinear approximation) of finite element functions is used in the

part of the bilinear form corresponding to the second-order differential term.

In this paper, we consider the three-dimensional case. The three-dimensional Morley element

can be found in [11] or in [14]. We will take a similar way used in [15] and propose a modified
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Morley element method for problem (1.1). We will use certain approximation of finite element

functions in the part of the bilinear form corresponding to the second-order differential term. It

will be shown that the modified method converges uniformly in the perturbation parameter ε.

The three-dimensional Morley element uses the integral averages of the function over all edges

as degrees of freedom instead of the function values at vertices. To given suitable approximation

of the finite element function, we need to construct a convergent nonconforming finite element

for the Poisson equation with the integral averages of the function over all edges as degrees of

freedom.

Problem (1.1) is a boundary value problem of a stationary linearizing form of the Cahn-

Hilliard equation. The modelling in material science makes use of the Cahn-Hilliard equations

in three dimensions (see, e.g., [2, 3, 6]). Besides the theoretical interest, our new finite element

method is expected to be useful in the computation of the Cahn-Hilliard equation.

The paper is organized as follows. The rest of this section lists some preliminaries. Section 2

describes a nonconforming finite element for the Poisson equation. Section 3 gives the detailed

descriptions of the modified Morley element method. Section 4 shows the uniform convergence

of the method.

Throughout this paper, we assume n = 3. For a nonnegative integer s, let Hs(Ω), ‖ · ‖s,Ω

and | · |s,Ω denote the usual Sobolev space, norm and semi-norm, respectively. Let Hs
0(Ω) be

the closure of C∞
0 (Ω) in Hs(Ω) with respect to the norm ‖ · ‖s,Ω and (·, ·) denotes the inner

product of L2(Ω). Define

a(v, w) =

∫

Ω

3
∑

i,j=1

∂2v

∂xi∂xj

∂2w

∂xi∂xj
, ∀v, w ∈ H2(Ω), (1.2)

b(v, w) =

∫

Ω

3
∑

i=1

∂v

∂xi

∂w

∂xi
, ∀v, w ∈ H1(Ω). (1.3)

The weak form of problem (1.1) is: find u ∈ H2
0 (Ω) such that

ε2a(u, v) + b(u, v) = (f, v), ∀v ∈ H2
0 (Ω). (1.4)

Let u0 be the solution of following boundary value problem:

{

−∆u0 = f, in Ω,

u0|∂Ω = 0.
(1.5)

For a mesh size h, let Th be a triangulation of Ω consisting of tetrahedra. For each T ∈ Th,

let hT be the diameter of the smallest ball containing T and ρT be the diameter of the largest

ball contained in T . Let {Th} be a family of triangulations with h→ 0. Throughout the paper,

we assume that hT ≤ h ≤ ηρT , ∀T ∈ Th, with η a positive constant independent of h.

2. A Nonconforming Element for the Poisson Equation

For a subset B ⊂ R3 and a nonnegative integer r, let Pr(B) be the space of all polynomials

with degree not greater than r.

Given a tetrahedron T , its four vertices are denoted by aj , 1 ≤ j ≤ 4. The face of T opposite

aj is denoted by Fj , 1 ≤ j ≤ 4. The edge with ai and aj as its vertices, is denoted by Sij ,


