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Abstract

A fourth-order operator marching method for the Helmholtz equation in a waveguide is

developed in this paper. It is derived from a new fourth-order exponential integrator for lin-

ear evolution equations. The method improves the second-order accuracy associated with

the widely used step-wise coupled mode method where the waveguide is approximated

by segments that are uniform in the propagation direction. The Helmholtz equation is

solved using a one-way reformulation based on the Dirichlet-to-Neumann map. An alter-

native version closely related to the coupled mode method is also given. Numerical results

clearly indicate that the method is more accurate than the coupled mode method while

the required computing effort is nearly the same.
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1. Introduction

For acoustic [1], microwave and optical waveguides [2], it is often necessary to solve the

Helmholtz equation

uxx + uzz + κ2(x, z)u = 0 (1.1)

in a domain which has an extended length scale in one direction, say x. Here, x is the variable

along the axis of the waveguide (i.e., the main propagation direction), z is the transverse

variable and the wavenumber κ varies with both x and z. Typically, the original waveguide is

infinite in the x direction, but we assume that the x-dependent part of the waveguide is finite.

That is, κ is x-independent when x < 0 and x > L for some L > 0. For a given incident wave

in x < 0, the problem is to calculate the reflected wave for x < 0 and the transmitted wave for

x > L. This is a boundary value problem and the solution can be highly oscillatory if κ is large.

Finite difference [3–5] and finite element [6–9] methods have been used to solve this problem.

In particular, highly accurate solutions can be obtained by the adaptive finite element method

[10, 11]. However, the problem is difficult to solve by a direct discretization of the Helmholtz

equation when L ≫ 1. The finite difference and finite element methods give rise to large linear

systems that are difficult to solve, because the coefficient matrix is complex, non-Hermitian and

indefinite.

Typically, we are interested in waveguides that change slowly in the propagation direction.

That is, the variation of κ with x is small over the scale of a typical wavelength (i.e., 1/κ). In

this case, approximate one-way models [1] which have a first-order derivative in x are widely
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used. These one-way models can be efficiently solved by marching forward in the x direction.

However, for problems where the reflected waves are important and when the overall change

of the waveguide (over a large propagation distance) is significant, it is still necessary to solve

the Helmholtz equation. Standard discretization schemes of the Helmholtz equation require

that a step size in the x-direction be smaller than a fraction of the typical wavelength. For

slowly varying waveguides, it is possible to develop more efficient numerical methods [12] where

the step size in x is only restricted by the variation of the waveguide in the x direction. In

the step-wise coupled mode method [1, 2, 13], the waveguide is approximated by a sequence of

x-invariant segments. For the segment from xj−1 to xj = xj−1 + h, the wavenumber κ(x, z) is

approximated by κ(xj−1/2, z), where xj−1/2 = xj − h/2, and the solution is expanded in the

eigenfunctions of the operator ∂2
z + κ2(xj−1/2, z). When κ has a weak dependence on x, the

segment length h can be larger than a typical wavelength. Notice that this is a second-order

method, so that the numerical solution should have an O(h2) error. But the coefficient in the

error term vanishes when the waveguide becomes x-independent.

The second-order methods developed in [14] is equivalent to the step-wise coupled mode

method, but it uses a one-way reformulation of the Helmholtz equation in terms of the Dirichlet-

to-Neumann map. The advantage of such a one-way operator marching scheme is that the

required computer memory is independent of the total distance in the x direction, i.e. L. On

the other hand, the required computer memory of the coupled mode method depends linearly

on L. The two methods require nearly the same computing effort in terms of the floating

point operations. The fourth-order method developed in [14] reduces the O(h2) error of the

coupled mode method to O(h4) and it preserves the property that h can be larger than a

typical wavelength when κ varies with x slowly. However, this method needs to evaluate the

derivatives of κ. This can be very inconvenient, for example, when κ itself is calculated from

a coordinate transform when the original waveguide has a more complicated geometry [15].

Based on a fourth-order Magnus method [16] for linear evolution equations, we derived another

fourth-order operator marching method for the Helmholtz equation in [17]. The method does

not require the derivative of κ, but it cannot be applied to the more general Helmholtz equation

as in [15] due to the existence of a commutator in the fourth-order Magnus method [16].

In this paper, we develop a new derivative-free fourth-order operator marching method

that can be applied to the more general case. It is based on a new fourth-order exponential

integrator for linear evolution equations. This exponential integrator may be useful in other

applications and its fourth-order of accuracy is proved in this paper. While there are many

high order numerical methods for linear evolution equations, only a few methods can be used to

derive efficient operator marching schemes for the Helmholtz equation. The new fourth-order

operator marching method is given using a one-way reformulation based on the Dirichlet-to-

Neumann map, but we also present a version of this method which is similar to the standard

step-wise coupled mode method [1, 2, 13]. Although the fourth-order methods in [14, 17] also

have variants similar to the widely used coupled mode methods, this connection has not been

revealed before. Numerical examples are used to illustrate the fourth-order accuracy of the

proposed method.

2. One-way Re-formulations

The waveguide is assumed to be x-invariant for x < 0 and x > L; thus, we let

κ = κ0(z) for x < 0, κ = κ∞(z) for x > L.


