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Abstract

Some quadrature methods for integration of
∫ b

a
f(x)eiωg(x)dx for rapidly oscillatory

functions are presented. These methods, based on the lower order remainders of Taylor
expansion and followed the thoughts of Stetter [9], Iserles and Nørsett [5], are suitable for
all ω and the decay of the error can be increased arbitrarily in case that g′(x) 6= 0 for
x ∈ [a, b], and easy to be implemented and extended to the improper integration and the

general case I [f ] =
∫ b

a
f(x)eig(ω,x)dx.
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1. Introduction

The quadrature of highly oscillating integrals is important in many areas of applied math-
ematics. The standard integration formulas such as the trapezoid rule, Simpson’s rule or
Gaussian integration may suffer from difficulty. Many methods have been developed since
Filon [2], such as Price [8], Stetter [9], Longman [6], Levin [7], Iserles [3,4] and Iserles and
Nørsett [5], etc.

For the Filon-type quadrature of the form
∫ h

0
f(x)eiωxw(x)dx, Iserles [3] analyzed the con-

vergent behavior in a range of frequency regimes and showed that the accuracy increases when
oscillation becomes faster. Recently Iserles and Nørsett [5] extended the approach of Iserles

[3,4] and defined the generalized Filon-type method for integral
∫ 1

0
f(x)eiωg(x)dx and showed

that the rate of decay of the error, once frequency grows, can be increased arbitrarily by the
inclusion of higher derivatives.

Both the Filon-type and the generalized Filon-type, an approach f(x) by splines, are efficient

for suitably smooth functions under the condition that the moments
∫ 1

0 xkeiωg(x)dx can be
accurately calculated.

Price’s numerical approximation of Fourier transforms [8] is considered the integration be-
tween the zeros, for example,

∫ 2π

0

f(x) sin nxdx.

Each
∫ (k+1)π/n

kπ/n

f(x) sin nxdx

may be expeditiously computed by use of a Labatto rule. The Price method completely fails
when ω is significantly larger than the number of quadrature points.
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Here we present some methods, basing on the lower order remainders of Taylor expansion,
which transfer highly oscillatory functions into ’nice’ functions—non-highly oscillating func-
tions. And following the thoughts of Setter [9], Iserles and Nørsett [5] we show that these
methods are suitable for all ω and the decay of the error can be increased arbitrarily the same
as the generalized Filon-type method for large ω in case that g′(x) 6= 0 for x ∈ [a, b]. These
methods are easy to be implemented and extended to the improper integration and the integral

I[f ] =

∫ b

a

f(x)eig(ω,x)dx,

where eig(ω,x) with highly oscillation and limω→∞ g′x(ω, x) = ∞ for all x in [a, b].

2. Quadrature of Integral
∫ b
a f(x)eiωg(x)dx

Let I[f ] denote the following integral

I[f ] =

∫ b

a

f(x)eiωg(x)dx, (2.1)

where f and g are suitably smooth functions. Suppose that the function g has at most finite
stationary points in [a, b]. Without loss of generality, assume g has only one stationary point
x0 in [a, b]. Otherwise, we will partition the interval into finite subintervals such that each
subinterval only contains one stationary point. The nth order Taylor polynomial of eiωg(x) is

F0 = 1, Fn(iωg(x)) = 1 + iωg(x) +
(iωg(x))2

2!
+

(iωg(x))3

3!
+ · · · +

(iωg(x))n

n!

and the nth order remainder of Taylor expansion is

Tn(x) = eiωg(x) − Fn(iωg(x)). (2.2)

Tn(x) can be written as

Tn(x) =


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



(

cos(ωg(x)) − 1 +
(ωg(x))2

2! + · · · +
(−1)k+1(ωg(x))2k

(2k)!

)

+

i

(

sin(ωg(x)) − ωg(x) + · · · +
(−1)k(ωg(x))2k−1

(2k − 1)!

)

, n=2k,
(

cos(ωg(x)) − 1 +
(ωg(x))2

2! + · · · +
(−1)k+1(ωg(x))2k

(2k)!

)

+

i

(

sin(ωg(x)) − ωg(x) + · · · +
(−1)k(ωg(x))2k+1

(2k + 1)!

)

, n=2k+1.

Note that Un := cos(x) − 1 + x2

2!
+ · · · +

(−1)k+1x2k

(2k)!
, Vn := sin(x) − x + · · ·+

(−1)kx2k−1

(2k − 1)!
are

monotonic and smooth in [0, +∞) or (−∞, 0] for all n = 1, 2, . . .. Hence, for monotonic and
smooth function g(x), Un(ωg(x)) and Vn(ωg(x)) are smooth and monotonic in [a, b] ∩ [0,∞)
and [a, b] ∩ (−∞, 0]. Therefore Tn(x) are not oscillatory even if eiωg(x) is highly oscillatory for

large ω. For example, cos(1000x
1

3 ) − 1 is highly oscillatory, but cos(1000x
1

3 ) − 1 +
(1000x

1

3 )2

2

and cos(1000x
1

3 ) − 1 +
(1000x

1

3 )2

2 −
(1000x

1

3 )4

4!
are monotonic and smooth.

For g(x) having at most finite stationary points in [a, b], by the intermediate value theorem
for derivatives of Darbouxe [10], g′(x) has the same sign between the stationary points and g(x)
is monotonic in these subintervals, the nth(n ≥ 2) Taylor remainders Tn(x) is not oscillatory
functions, either. To calculus the highly oscillatory integrals, we need only lower order Taylor
expansions. Here we consider the first and second order Taylor expansions.


