STABILITY ANALYSIS OF RUNGE-KUTTA METHODS FOR NONLINEAR SYSTEMS OF PANTOGRAPH EQUATIONS *1)

Yue-xin Yu Shou-fu Li
(Department of Mathematics, Xiangtan University, Xiangtan 411105, China)

Abstract

This paper is concerned with numerical stability of nonlinear systems of pantograph equations. Numerical methods based on (k, l)-algebraically stable Runge-Kutta methods are suggested. Global and asymptotic stability conditions for the presented methods are derived.

Mathematics subject classification: 65L06, 65L20.
Key words: Nonlinear pantograph equations, Runge-Kutta methods, Numerical stability, Asymptotic stability.

1. Introduction

Consider the following systems of the pantograph equations

$$
\begin{cases}y^{\prime}(t)=f(t, y(t), y(p t)), & t>0 \tag{1.1}\\ y(0)=\eta, & \eta \in C^{N}\end{cases}
$$

where $f:[0,+\infty) \times C^{N} \times C^{N} \rightarrow C^{N}$ is a given function and $p \in(0,1)$ is a real constant. For applications of the systems(1.1), we refer to Iserles[1].

In order to investigate the stability of numerical methods for the pantograph equations, the scalar linear pantograph equations

$$
y^{\prime}(t)=\lambda y(t)+\mu y(p t)
$$

where $\lambda, \mu \in C$ and $p \in(0,1)$ are constants, have been used as the test problem and many significant results have been derived(cf. [2-10, 16, 17]). However, little attention has been paid to the nonlinear case of the form (1.1). In 2002, Zhang and Sun[11] considered nonlinear stability of one-leg θ-methods for (1.1) and obtained some results of global and asymptotic stability. On the basis of their works, the present paper further deal with numerical stability of (k, l) algebraically stable Runge-Kutta methods with variable stepsize (introduced by Liu[9]) for the nonlinear systems (1.1). Global and asymptotic stability conditions for the presented methods are derived.

2. Runge-Kutta Methods with Variable Stepsize

In this section, we consider the adaptation of Runge-Kutta methods for solving (1.1). Let (A, b, c) denotes a given Runge-Kutta method with matrix $A=\left(a_{i j}\right) \in R^{s \times s}$ and vectors $b=\left(b_{1}, b_{2}, \ldots, b_{s}\right)^{T} \in R^{s}, c=\left(c_{1}, c_{2}, \ldots, c_{s}\right)^{T} \in R^{s}$. In this paper, we always assume that $c_{i} \in[0,1], i=1,2, \ldots, s$. The application of the Runge-Kutta method (A, b, c) to (1.1) yields

$$
\begin{cases}Y_{i}^{(n)}=y_{n}+h_{n+1} \sum_{j=1}^{s} a_{i j} f\left(t_{n}+c_{j} h, Y_{j}^{(n)}, \widetilde{Y}_{j}^{(n)}\right), & i=1,2, \ldots, s, \tag{2.1}\\ y_{n+1}=y_{n}+h_{n+1} \sum_{i=1}^{s} b_{i} f\left(t_{n}+c_{i} h, Y_{i}^{(n)}, \widetilde{Y}_{i}^{(n)}\right), & n=0,1,2, \ldots\end{cases}
$$

[^0]where $h_{n+1}=t_{n+1}-t_{n}, y_{n}, Y_{i}^{(n)}$ and $\widetilde{Y}_{i}^{(n)}(n \geq 0, i=1,2, \ldots, s)$ are approximations to $y\left(t_{n}\right)$, $y\left(t_{n}+c_{i} h_{n+1}\right)$ and $y\left(p\left(t_{n}+c_{i} h_{n+1}\right)\right)$ respectively.

Since a serious storage problem is created when the computation for (1.1) with constant stepsize is run on any computer, we consider a variable stepsize strategy introduced by Liu[9] and Bellen et al.[2] to resolve the storage problem. The grid points are selected as follows(cf. [11]).

First, divide $[0,+\infty)$ into a set of infinite bounded intervals, that is

$$
[0,+\infty)=\bigcup_{l=0}^{\infty} D_{l}
$$

where $D_{0}=[0, \gamma]$ with a given positive number γ and $D_{l}=\left(T_{l-1}, T_{l}\right](l \geq 1)$ with $T_{l}=p^{-l} \gamma$. Then, partition every primary interval $D_{l}(l \geq 1)$ into equal m subintervals. Thus the grid points on $[0,+\infty) / D_{0}$ are determined by

$$
t_{n}=T_{\lfloor(n-1) / m\rfloor}+(n-\lfloor(n-1) / m\rfloor m) h_{n}, \quad n \geq 1
$$

where $\lfloor x\rfloor$ denotes the maximal integer which not exceeds x. On D_{0}, choose $t_{0}=\gamma, t_{-(m+1)}=0$, $t_{-i}=p t_{m-i}, i=m, m-1, \ldots, 1$, as grid points. The corresponding numerical solutions y_{0}, y_{-i} and $Y_{j}^{(-i)}(i=m+1, m, \ldots, 1, j=1,2, \ldots, s)$ are assumed to exist. So the function $\varphi(t):=p t$ has these properties:

$$
\begin{array}{ll}
{[S 1] \varphi\left(t_{n}\right)=t_{n-m},} & n \geq 0 \\
{[S 2] \varphi\left(D_{n+1}\right)=D_{n},} & n \geq 1 \\
{[S 3] \varphi\left(h_{n}\right)=h_{n-m},} & n \geq 1,
\end{array}
$$

and the stepsize sequence $\left\{h_{n}\right\}$ is determined by

$$
h_{n}= \begin{cases}p \gamma, & n=-m \tag{2.2}\\ \frac{(1-p) \gamma}{m}, & n=-m+1,-m+2, \ldots,-1,0 \\ \frac{(1-p) \gamma}{m p[(n-1) / m]+1}, & n=1,2,3, \ldots\end{cases}
$$

Properties [S1]-[S3] imply that the choice of grid points has removed the computational storage problem for (1.1) and the method (2.1) can be written as

$$
\begin{cases}Y_{i}^{(n)}=y_{n}+h_{n+1} \sum_{j=1}^{s} a_{i j} f\left(t_{n}+c_{j} h, Y_{j}^{(n)}, Y_{j}^{(n-m)}\right), & i=1,2, \ldots, s \tag{2.3}\\ y_{n+1}=y_{n}+h_{n+1} \sum_{i=1}^{s} b_{i} f\left(t_{n}+c_{i} h, Y_{i}^{(n)}, Y_{i}^{(n-m)}\right), & n=0,1,2, \ldots\end{cases}
$$

3. Stability Analysis of the Methods

In order to study the stability of the methods (2.3), consider the perturbed systems of (1.1)

$$
\begin{cases}z^{\prime}(t)=f(t, z(t), z(p t)), & t>0 \tag{3.1}\\ z(0)=\varsigma, & \varsigma \in C^{N}\end{cases}
$$

Similarly, applying method (2.3) to the systems (3.1) yields

$$
\begin{cases}Z_{i}^{(n)}=z_{n}+h_{n+1} \sum_{j=1}^{s} a_{i j} f\left(t_{n}+c_{j} h, Z_{j}^{(n)}, Z_{j}^{(n-m)}\right), & i=1,2, \ldots, s \tag{3.2}\\ z_{n+1}=z_{n}+h_{n+1} \sum_{i=1}^{s} b_{i} f\left(t_{n}+c_{i} h, Z_{i}^{(n)}, Z_{i}^{(n-m)}\right), & n=0,1,2, \ldots\end{cases}
$$

where z_{n} and $Z_{i}^{(n)}$ are approximations to $z\left(t_{n}\right)$ and $z\left(t_{n}+c_{i} h_{n+1}\right)$ respectively.
Both (1.1) and (3.1), we assume that the function f satisfies

$$
\left\{\begin{array}{lll}
\operatorname{Re}\left\langle u_{1}-u_{2}, f\left(t, u_{1}, v\right)-f\left(t, u_{2}, v\right)\right\rangle \leq \alpha\left\|u_{1}-u_{2}\right\|^{2}, & t>0, & u_{1}, u_{2}, v \in C^{N} \tag{3.3}\\
\left\|f\left(t, u, v_{1}\right)-f\left(t, u, v_{2}\right)\right\| \leq \beta\left\|v_{1}-v_{2}\right\|, & t>0, & u, v_{1}, v_{2} \in C^{N}
\end{array}\right.
$$

where $\langle\cdot, \cdot\rangle$ and $\|\cdot\|$ denote a given inner product and the corresponding norm in complex N-dimensional space C^{N} respectively. In the following, all systems (1.1) with (3.3) will be

[^0]: * Received December 29, 2003, final revised October 8, 2004.

 1) This work is supported by the National Natural Science Foundation of China(No.10271100).
