ON COEFFICIENT POLYNOMIALS OF CUBIC HERMITE-PADÉ APPROXIMATIONS TO THE EXPONENTIAL FUNCTION ${ }^{* 1)}$

Cheng-de Zheng Guo-can Wang Zhi-bin Li
(Department of Mathematical Physics, Dalian Jiaotong University, Dalian 116028, China)

Abstract

The polynomials related with cubic Hermite-Padé approximation to the exponential function are investigated which have degrees at most n, m, s respectively. A connection is given between the coefficients of each of the polynomials and certain hypergeometric functions, which leads to a simple expression for a polynomial in a special case. Contour integral representations of the polynomials are given. By using of the saddle point method the exact asymptotics of the polynomials are derived as n, m, s tend to infinity through certain ray sequence. Some further uniform asymptotic aspects of the polynomials are also discussed.

Mathematics subject classification: 41A21.
Key words: Padé-type approximant, Cubic Hermite-Padé approximation, Hypergeometric function, Saddle point method.

1. Introduction

Hermite-Padé approximation to the exponential function was introduced by Hermite [5] who considered expressions of the form

$$
\begin{equation*}
t_{k}(x) e^{s_{k} x}+t_{k-1}(x) e^{s_{k-1} x}+\cdots+t_{1}(x) e^{s_{1} x}=O\left(x^{h}\right), \tag{1.1}
\end{equation*}
$$

where $t_{1}(x), t_{2}(x), \cdots, t_{k}(x)$ are polynomials, of specified degrees,chosen so that h is as large as possible.

Included, of course, in expressions of type (1.1) are both the ordinary Padé approximations

$$
\begin{equation*}
\hat{P}_{n}(x) e^{-x}+\hat{Q}_{m}(x)=O\left(x^{n+m+1}\right) \tag{1.2}
\end{equation*}
$$

with $\operatorname{deg}\left(\hat{P}_{n}\right) \leq n, \operatorname{deg}\left(\hat{Q}_{m}\right) \leq m, \hat{P}_{n}(0) \neq 0$, and the quadratic Hermite-Padé approximations $[3,4]$

$$
\begin{equation*}
\tilde{P}_{n}(x) e^{-2 x}+\tilde{Q}_{m}(x) e^{-x}+\tilde{R}_{s}(x)=O\left(x^{n+m+s+2}\right) \tag{1.3}
\end{equation*}
$$

with $\operatorname{deg}\left(\tilde{P}_{n}\right) \leq n, \operatorname{deg}\left(\tilde{Q}_{m}\right) \leq m, \operatorname{deg}\left(\tilde{R}_{s}\right) \leq s, \tilde{P}_{n}(0) \neq 0$.
In this paper, we wish to investigate a number of properties of the polynomials P_{n}, T_{l}, Q_{m} and R_{s} that arise from the solution of the following cubic Hermite-Padé approximations

$$
\begin{equation*}
P_{n}(x) e^{-3 x}+T_{l}(x) e^{-2 x}+Q_{m}(x) e^{-x}+R_{s}(x)=O\left(x^{n+m+s+l+3}\right) \tag{1.4}
\end{equation*}
$$

with $\operatorname{deg}\left(P_{n}\right) \leq n, \operatorname{deg}\left(T_{l}\right) \leq l, \operatorname{deg}\left(Q_{m}\right) \leq m, \operatorname{deg}\left(R_{s}\right) \leq s, P_{n}$ monic. But as is well known, if we set $x=y-\frac{a}{3}$, then any cubic equation $x^{3}+a x^{2}+b x+c=0$ can be transformed into the following form

$$
y^{3}+\left(b-\frac{a^{2}}{3}\right) y+\left(\frac{2}{27} a^{3}-\frac{1}{3} a b+c\right)=0 .
$$

[^0]So without loss of generality, in this paper we only consider approximations to e^{-x} generated by finding polynomials P_{n}, Q_{m} and R_{s} so that

$$
\begin{equation*}
E_{n m s}(x):=P_{n}(x) e^{-3 x}+Q_{m}(x) e^{-x}+R_{s}(x)=O\left(x^{n+m+s+2}\right) \tag{1.5}
\end{equation*}
$$

The explicit formulae for these unique polynomials are known; in the super-diagonal case $n=$ $m=s$, they were obtained by Wang \& Zheng [12] and for arbitrary $n, m, s \in \mathbf{N}$, they can be found in Zheng \& Wang [13].

2. The Polynomials P_{n}, Q_{m} and R_{s}

The polynomials P_{n}, Q_{m} and R_{s} with $\operatorname{deg}\left(P_{n}\right)=n, \operatorname{deg}\left(Q_{m}\right)=m, \operatorname{deg}\left(R_{s}\right)=s, P_{n}$ monic, that satisfy (1.5) are given by (cf. Zheng \& Wang [13])

$$
\begin{equation*}
P_{n}(x)=n!\sum_{j=0}^{n} \frac{p_{j} x^{j}}{j!} \tag{2.1}
\end{equation*}
$$

where, for $0 \leq j \leq n$,

$$
\begin{gather*}
p_{j}=2^{j-n} \sum_{k=0}^{n-j}\left(\frac{2}{3}\right)^{k}\binom{n+m-k-j}{m}\binom{s+k}{s} \tag{2.2}\\
Q_{m}(x)=-\frac{3^{s+1}}{2^{n}} n!\sum_{j=0}^{m} \frac{q_{j} x^{j}}{j!} \tag{2.3}
\end{gather*}
$$

where, for $0 \leq j \leq m$,

$$
\begin{gather*}
q_{j}=\sum_{k=0}^{m-j}(-2)^{k+j}\binom{n+m-k-j}{n}\binom{s+k}{s} \tag{2.4}\\
R_{s}(x)=(-1)^{m} 2^{m+1} 3^{s-n} n!\sum_{j=0}^{s} \frac{r_{j} x^{j}}{j!} \tag{2.5}
\end{gather*}
$$

where, for $0 \leq j \leq s$,

$$
\begin{equation*}
r_{j}=(-1)^{j} \sum_{k=0}^{s-j} \frac{1}{3^{k}}\binom{s+m-k-j}{m}\binom{n+k}{n} \tag{2.6}
\end{equation*}
$$

We observe that each of the polynomials P_{n}, Q_{m}, and R_{s} depends on all three positive integers n, m, and s and the subscript merely denotes the degree of the polynomial in each case. Writing $P_{n}(x)=P(n, m, s ; x), Q_{m}(x)=Q(n, m, s ; x)$, and $R_{s}(x)=R(n, m, s ; x)$.

Our first result establishes a connection between the coefficients of P_{n}, Q_{m}, R_{s} and certain ${ }_{2} F_{1}$ hypergeometric functions. We recall the definition of the Gauss function (cf.[1])

$$
\begin{equation*}
{ }_{2} F_{1}(a, b ; c ; z):=\sum_{k=0}^{\infty} \frac{(a)_{k}(b)_{k}}{(c)_{k} k!} z^{k} \tag{2.7}
\end{equation*}
$$

where

$$
(\alpha)_{k}:= \begin{cases}\alpha(\alpha+1) \cdots(\alpha+k-1)=\Gamma(\alpha+k) / \Gamma(\alpha), & \text { if } k \geq 1 \tag{2.8}\\ 1, & \text { if } \alpha \neq 0, k=0\end{cases}
$$

If $t \in \mathbf{N}$, it follows immediately from (2.8) that

$$
(-t)_{k}= \begin{cases}(-1)^{k} t!/(t-k)!, & \text { for } 0 \leq k \leq t \tag{2.9}\\ 0, & \text { for } k>t\end{cases}
$$

[^0]: * Received March 25, 2003.

 1) Supported by the NNSF (10271022, 60373093) of China and the NSF of Guangdong Province, China (No. 021755).
