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Abstract

The polynomials related with cubic Hermite-Padé approximation to the exponential
function are investigated which have degrees at most n, m, s respectively. A connection
is given between the coefficients of each of the polynomials and certain hypergeometric
functions, which leads to a simple expression for a polynomial in a special case. Contour
integral representations of the polynomials are given. By using of the saddle point method
the exact asymptotics of the polynomials are derived as n, m, s tend to infinity through
certain ray sequence. Some further uniform asymptotic aspects of the polynomials are also
discussed.
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1. Introduction

Hermite-Padé approximation to the exponential function was introduced by Hermite [5] who
considered expressions of the form

tk(x)eskx + tk−1(x)e
sk−1x + · · · + t1(x)e

s1x = O(xh), (1.1)

where t1(x), t2(x), · · · , tk(x) are polynomials, of specified degrees,chosen so that h is as large
as possible.

Included, of course, in expressions of type (1.1) are both the ordinary Padé approximations

P̂n(x)e−x + Q̂m(x) = O(xn+m+1) (1.2)

with deg(P̂n)≤ n, deg(Q̂m)≤ m, P̂n(0) 6= 0, and the quadratic Hermite-Padé approximations
[3,4]

P̃n(x)e−2x + Q̃m(x)e−x + R̃s(x) = O(xn+m+s+2) (1.3)

with deg(P̃n)≤ n,deg(Q̃m)≤ m,deg(R̃s)≤ s, P̃n(0) 6= 0.
In this paper, we wish to investigate a number of properties of the polynomials Pn, Tl, Qm

and Rs that arise from the solution of the following cubic Hermite-Padé approximations

Pn(x)e−3x + Tl(x)e
−2x +Qm(x)e−x +Rs(x) = O(xn+m+s+l+3), (1.4)

with deg(Pn)≤ n, deg(Tl)≤ l, deg(Qm)≤ m, deg(Rs)≤ s, Pn monic. But as is well known, if
we set x = y − a

3 , then any cubic equation x3 + ax2 + bx+ c = 0 can be transformed into the
following form

y3 + (b− a2

3
)y + (

2

27
a3 − 1

3
ab+ c) = 0.
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So without loss of generality, in this paper we only consider approximations to e−x generated
by finding polynomials Pn, Qm and Rs so that

Enms(x) := Pn(x)e−3x +Qm(x)e−x +Rs(x) = O(xn+m+s+2). (1.5)

The explicit formulae for these unique polynomials are known; in the super-diagonal case n =
m = s, they were obtained by Wang & Zheng [12] and for arbitrary n,m, s ∈ N, they can be
found in Zheng & Wang [13].

2. The Polynomials P
n
, Q

m
and R

s

The polynomials Pn, Qm and Rs with deg(Pn)= n, deg(Qm)= m, deg(Rs)= s, Pn monic,
that satisfy (1.5) are given by (cf. Zheng & Wang [13])

Pn(x) = n!

n
∑

j=0

pjx
j

j!
. (2.1)

where, for 0 ≤ j ≤ n,

pj = 2j−n

n−j
∑

k=0

(

2

3

)k (

n+m− k − j

m

)(

s+ k

s

)

; (2.2)

Qm(x) = −3s+1

2n
n!

m
∑

j=0

qjx
j

j!
, (2.3)

where, for 0 ≤ j ≤ m,

qj =

m−j
∑

k=0

(−2)k+j

(

n+m− k − j

n

)(

s+ k

s

)

; (2.4)

Rs(x) = (−1)m2m+13s−nn!
s

∑

j=0

rjx
j

j!
, (2.5)

where, for 0 ≤ j ≤ s,

rj = (−1)j

s−j
∑

k=0

1

3k

(

s+m− k − j

m

)(

n+ k

n

)

. (2.6)

We observe that each of the polynomials Pn, Qm, and Rs depends on all three positive integers
n,m, and s and the subscript merely denotes the degree of the polynomial in each case. Writing
Pn(x) = P (n,m, s;x), Qm(x) = Q(n,m, s;x),and Rs(x) = R(n,m, s;x).

Our first result establishes a connection between the coefficients of Pn, Qm, Rs and certain

2F1 hypergeometric functions.We recall the definition of the Gauss function (cf.[1])

2F1(a, b; c; z) :=
∞
∑

k=0

(a)k(b)k

(c)kk!
zk, (2.7)

where

(α)k :=

{

α(α + 1) · · · (α+ k − 1) = Γ(α+ k)/Γ(α), if k ≥ 1,
1, if α 6= 0, k = 0.

(2.8)

If t ∈ N,it follows immediately from (2.8) that

(−t)k =

{

(−1)kt!/(t− k)!, for 0 ≤ k ≤ t,
0, for k > t.

(2.9)


