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Abstract

In this paper we propose the finite difference method for the forward-backward heat
equation. We use a coarse-mesh second-order central difference scheme at the middle
line mesh points and derive the error estimate. Then we discuss the iterative method
based on the domain decomposition for our scheme and derive the bounds for the rates of
convergence. Finally we present some numerical experiments to support our analysis.
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1. Introduction

In this paper, we consider the following boundary value problem of a forward-backward
parabolic equation:















a(x)ut − uxx = f(x, t), (x, t) ∈ Ω = (−1, 1) × (0, 1),
u(x, 0) = 0, 0 ≤ x ≤ 1,
u(x, 1) = 0, −1 ≤ x ≤ 0,
u(1, t) = 0, u(−1, t) = 0, 0 < t < 1,

(1.1)

where a(x) > 0 for x > 0, a(x) < 0 for x < 0 and a(0) = 0. For example, a(x) = x or a(x) = xm

with m the odd integer. The problem (1.1) arises in a variety of applications such as randomly
accelerated particle problem and fluid flow near a boundary where separation occurs, see [1, 2]
for the details. So far there are several numerical approach to this problem, for example, the
finite difference method[1], least square method[5] and Galerkin finite element method[3, 4, 7, 8].

The purpose of this paper is to present a finite difference scheme to equation (1.1). Unlike
the standard way in [1], we use a coarse mesh second-order central difference scheme at the mesh
points lie on the middle line x = 0, 0 < t < 1. We prove the error estimates O(τ +h2+H3) with
time mesh size τ and space mesh size h and coarse mesh size H . Then we discuss the iterative
method based on the domain decomposition method for our scheme and obtain bounds of the
convergent rate with 1−H , which is better than that 1−h in [1]. In the last section we present
some numerical results to support our analysis.

2. The Difference Scheme

We first specify the grids. Let h = 1/M and xi = ih for i = 0,±1,±2, · · · ,±M . Let
τ = 1/N and tj = jτ for j = 0, 1, · · · , N .
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We use the backward and forward difference scheme on domain x > 0 and x < 0 respectively
and second order central difference scheme on the line x = 0 with coarse mesh H = m0h for
some given positive integer m0. Denote zji (−M + 1 ≤ i ≤ M − 1, 1 ≤ j ≤ N − 1) is the
approximation solution for the exact solution at point (ih, jτ). Then



























ai
zj+1
i − zji

τ
−

zj+1
i−1 − 2zj+1

i + zj+1
i+1

h2
= f j+1

i , 1 ≤ i ≤ M − 1, 0 ≤ j ≤ N − 2,

z0
i = 0, 1 ≤ i ≤ M − 1,

zjM = 0, 1 ≤ j ≤ N − 1;

(2.1)



























ai
zj+1
i − zji

τ
−

zji−1 − 2zji + zji+1

h2
= f ji , −M + 1 ≤ i ≤ −1, 1 ≤ j ≤ N − 1,

zNi = 0, −M + 1 ≤ i ≤ −1,

zj−M = 0, 1 ≤ j ≤ N − 1;

(2.2)

and

−
zjm0

− 2zj0 + zj−m0

H2
= f j0 , 1 ≤ j ≤ N − 1. (2.3)

Here ai = a(ih) and f ji = f(ih, jτ). For m0 = 1, it is the same method proposed in [1].
It is convenient to introduce the set of all mesh points by N ,

N = {(ih, jτ) | − M + 1 ≤ i ≤ M − 1, 1 ≤ j ≤ N − 1 }.

Further we split N = Nw ∪ Nv ∪ Nψ into three disjoint subsets as follows,

Nw = {(ih, jτ) | 1 ≤ i ≤ M − 1, 1 ≤ j ≤ N − 1 },

Nv = {(ih, jτ) | − M + 1 ≤ i ≤ −1, 1 ≤ j ≤ N − 1 },

Nψ = {(0, jτ) | 1 ≤ j ≤ N − 1 }.

We write the linear system (2.1)-(2.3) in the matrix form PZ = F with

P =





Avv 0 Avψ

0 Aww Awψ

Avψ Awψ Aψψ



 (2.4)

The vector Z = (Zv, Zw, Zψ)T with

Zv = (z1
−M+1, z

2
−M+1, · · · , z1

−1, · · · , zN−1
−1 )T ,

Zw = (z1
1 , z

2
1 , · · · , z1

M−1, · · · , zN−1
M−1)

T ,

and Zψ = (z1
0 , z

2
0 , · · · , zN−1

0 )T . And F the vector defined on the mesh points N of the function
f(x, t).

Let u be the exact solution of problem (1.1). Denote the error

Ej
i = u(ih, jτ) − zji , (ih, jτ) ∈ N .

We use the maximum norm
‖E‖N = max

(ih,jτ)∈N
|Ej
i |.

Now we will prove the following error estimates.
Theorem 2.1. Suppose that 1

2 |∂
2u/∂t2| and 1

12 |∂
4u/∂x4| are bounded by constant C0 on Ω̄,

the closure of Ω. Then

‖E‖N ≤
1

2
C0(τ + h2 + H3). (2.5)


